Pain
-
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain. ⋯ We conclude by highlighting emerging approaches and prospective avenues in the field that may provide new insights into the pathophysiology of chronic pain and potential new therapeutic targets. Because of the limited current body of research and unidentified targeted therapeutic strategies, we are forced to conclude that further research is required. However, we believe that brain diffusion MRI presents a promising opportunity for enhancing our understanding of chronic pain and improving clinical outcomes.
-
Decoding pain: uncovering the factors that affect the performance of neuroimaging-based pain models.
Neuroimaging-based pain biomarkers, when combined with machine learning techniques, have demonstrated potential in decoding pain intensity and diagnosing clinical pain conditions. However, a systematic evaluation of how different modeling options affect model performance remains unexplored. This study presents the results from a comprehensive literature survey and benchmark analysis. ⋯ Specifically, incorporating more pain-related brain regions, increasing sample sizes, and averaging less data during training and more data during testing improved performance. These findings offer useful guidance for developing neuroimaging-based biomarkers, underscoring the importance of strategic selection of modeling approaches to build better-performing neuroimaging pain biomarkers. However, the generalizability of these findings to clinical pain requires further investigation.
-
Spinal cord injury leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform, we explored whether such activity emerges in a thoracic spinal cord injury (SCI) contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which were correlated across multiple adjacent dorsal roots. ⋯ We conclude that spinal cord injury promotes the emergence of epileptiform activity in spinal sensory networks that promote profound corruption of sensory signaling. This includes hyperexcitability and bursting by ectopic spiking in afferent axons that propagate bidirectionally by reentrant central and peripheral projections as well as sensory circuit hypoexcitability during the burst refractory period. More broadly, the work links circuit hyperexcitability to epileptiform circuit emergence, further strengthening it as a conceptual basis to understand features of sensory dysfunction and neuropathic pain.