Contributions to nephrology
-
Dysnatremias (hypo- and hypernatremia) are common in patients admitted to the intensive care unit (ICU) with a prevalence approaching 20-30% in some studies. Recent data reveals that both hypo- and hypernatremia present on admission to or developing in the ICU are independent risk factors for poor prognosis. The origin of hypernatremia in the ICU is often iatrogenic and due to inadequate free water replacement of ongoing water losses. ⋯ The appropriate use of hypertonic (3%) saline in the treatment of hyponatremic encephalopathy has also shown to be very effective and the use of this therapy is reviewed here. Vasopressin receptor antagonists have also been shown to be effective at increasing serum sodium levels in patients with either euvolemic or hypervolemic hyponatremia and represent another therapeutic option. Recent data demonstrates that proper correction of hyponatremia is associated with improved short- and long-term outcomes.
-
Endotoxin removal by polymyxin B immobilized cartridge inactivates circulating proapoptotic factors.
Severe sepsis and septic shock continue to be major clinical challenges due to high associated mortality. Lipopolysaccharide (LPS) is a component of the cell membrane of Gram-negative bacteria, and is believed to initiate septic-induced signaling, inflammation and organ damage, including acute renal failure. Polymyxin B (PMX-B) hemoperfusion of septic patients can improve survival and decreasing organ dysfunction by removing circulating LPS. Unfortunately, some clinicians have been slow to adopt this novel therapy due to the lack of understanding of the cellular mechanisms involved in this treatment. Apoptosis, or programmed cell death, is known to contribute to acute renal failure and overall organ dysfunction during sepsis, and can be activated by LPS-initiated signaling pathways. Therefore, the protective renal effects associated with PMX-B hemoperfusion of septic patients may result from alterations in cellular apoptosis. This chapter will review recent data regarding the role of apoptosis prevention in the mechanism leading to the improved outcome and decreased acute renal failure associated with PMX-B hemoperfusion during sepsis. ⋯ The protective effects of extracorporeal therapy with PMX-B on the development of acute renal failure result, in part, through its ability to reduce the systemic proapoptotic activity of septic patients on renal cells.
-
Blood purification in critical care can perform 2 main functions: as an artificial support for failing organs (such as artificial kidney or liver support) and as a remover of causative humoral mediators of critical illness (such as severe sepsis and acute respiratory distress syndrome). As an artificial kidney, continuous blood purification (such as continuous hemofiltration and continuous hemodiafiltration, CHDF) is widely applied in intensive care units. The intensity of renal replacement therapy, however, has been reported to have no impact upon the efficacy of the blood purification in terms of clinical outcome. ⋯ However, our understanding of the pathophysiology of sepsis has changed since the concept of pattern recognition receptors and pathogen-associated molecular patterns was introduced. According to this, CHDF with a cytokine-adsorbing polymethylmethacrylate membrane hemofilter is preferable and more effective than direct hemoperfusion with an endotoxin-adsorbing polymyxin-B immobilized column in the treatment of sepsis and septic shock. Blood purification in critical care is gaining popularity, and is widely for both renal and non-renal indications.
-
Fluid balance management in pediatric critically ill patients is a challenging task, since fluid overload (FO) in the pediatric ICU is considered a trigger of multiple organ dysfunction. In particular, the smallest patients with acute kidney injury are at highest risk to develop severe interstitial edema, capillary leak syndrome and FO. Several studies previously showed a statistical difference in the percentage of FO among children with severe renal dysfunction requiring renal replacement therapy. ⋯ The present review will shortly describe nutrition strategies in critically ill children, it will discuss dosages, benefits and drawbacks of diuretic therapy, and alternative diuretic/nephroprotective drugs currently proposed in the pediatric setting. Finally, specific modalities of pediatric extracorporeal fluid removal will be presented. Fluid management, furthermore, is not only the discipline of removing water: it should also address the way to optimize fluid infusions and, above all, one of the most important fluids infused to all ICU patients with renal dysfunction: parenteral nutrition.
-
It has been reported that various types of blood purification intended for the removal of humoral mediators, such as cytokines, were performed in patients with severe sepsis/septic shock. While high-volume hemofiltration, hemofiltration using high cut-off membrane filters, and direct hemoperfusion with a polymyxin-B immobilized column are widely used in the treatment of severe sepsis/septic shock, we perform continuous hemodiafiltration using a polymethylmethacrylate membrane hemofilter (PMMA-CHDF), which shows an excellent cytokine-adsorbing capacity, for the treatment of severe sepsis/septic shock. ⋯ Furthermore, PMMA-CHDF could remove anti-inflammatory cytokines such as IL-10 from bloodstream, suggesting that it might improve immunoparalysis as well. These findings suggest that PMMA-CHDF is useful for the treatment of patients with severe sepsis/septic shock as a cytokine modulator.