Contributions to nephrology
-
Sepsis is one of the main causes of death in critically ill patients. The pathophysiology of sepsis is complex and not completely understood. The proinflammatory and anti-inflammatory response leads to cell and organ dysfunction and, in many cases, death. ⋯ Preliminary data indicate the feasibility of these modified techniques in sepsis. Their impact on patient prognosis, however, still needs proof by large randomized clinical trials. Finally, the emerging paradigm of sepsis-induced immune suppression provides additional rationale for the development of extracorporeal blood purification therapy for sepsis.
-
Endotoxin removal by polymyxin B immobilized cartridge inactivates circulating proapoptotic factors.
Severe sepsis and septic shock continue to be major clinical challenges due to high associated mortality. Lipopolysaccharide (LPS) is a component of the cell membrane of Gram-negative bacteria, and is believed to initiate septic-induced signaling, inflammation and organ damage, including acute renal failure. Polymyxin B (PMX-B) hemoperfusion of septic patients can improve survival and decreasing organ dysfunction by removing circulating LPS. Unfortunately, some clinicians have been slow to adopt this novel therapy due to the lack of understanding of the cellular mechanisms involved in this treatment. Apoptosis, or programmed cell death, is known to contribute to acute renal failure and overall organ dysfunction during sepsis, and can be activated by LPS-initiated signaling pathways. Therefore, the protective renal effects associated with PMX-B hemoperfusion of septic patients may result from alterations in cellular apoptosis. This chapter will review recent data regarding the role of apoptosis prevention in the mechanism leading to the improved outcome and decreased acute renal failure associated with PMX-B hemoperfusion during sepsis. ⋯ The protective effects of extracorporeal therapy with PMX-B on the development of acute renal failure result, in part, through its ability to reduce the systemic proapoptotic activity of septic patients on renal cells.
-
Multicenter Study Clinical Trial
Plasma dia-filtration for severe sepsis.
The mortality rate in severe sepsis is 30-50%, and independent liver and renal dysfunction impacts significantly on hospital and intensive care mortality. If 4 or more organs fail, mortality is > 90%. Recently, we reported a novel plasmapheresis--plasma diafiltration (PDF)--the concept of which is plasma filtration with dialysis. ⋯ On average, 12.0 +/- 16.4 sessions (range 2-70) per patient were performed. The 28-day mortality rate was 36.4%, while the predicted death rate was 68.0 +/- 17.7%. These findings suggest that PDF is a simple modality and may become a useful strategy for treatment of patients with septic multiple organ failure.
-
Acute heart failure (HF) and acute kidney injury (AKI) are common. These syndromes are each associated with considerable morbidity, mortality, and health resource utilization and are increasingly encountered. Fluid accumulation and overload are common themes in the pathophysiology and clinical course of both HF and AKI. ⋯ To date, the impact of fluid balance in both of these syndromes, more so with AKI, has likely been underappreciated. There is little to no data specifically on fluid balance in the cardiorenal syndrome, where acute/chronic heart disease can directly contribute to acute/chronic worsening of kidney function that likely exacerbates fluid homeostasis. Additional investigations are needed.
-
Continuous renal replacement therapy (CRRT) has been extensively used in Japan as renal support for critically ill patients managed in the ICU. In Japan, active research has also been conducted on non-renal indications for CRRT, i.e. the use of CRRT for purposes other than renal support. Various methods of blood purification have been attempted to remove inflammatory mediators, such as cytokines, in patients with severe sepsis or septic shock. ⋯ In evaluating the efficacy of CRRT for non-renal indications, it is essential to focus on patients subjected to be studied, such as severe sepsis or septic shock, and to evaluate its indication, commencement, termination of therapy and also its therapeutic effects based on analysis of blood levels of the target substances to be removed (e.g. cytokines). IL-6 blood level appears to be useful as a variable for this evaluation. It is expected that evidence endorsing the validity of these methods now being attempted in Japan will be reported near future.