Contributions to nephrology
-
Fluid management in critically ill patients is a complex process as aggressive fluid resuscitation is commonly utilized for initial hemodynamic support and fluid administration often contributes to fluid retention, particularly when there is impaired kidney function. Recent evidence suggests that fluid accumulation is associated with adverse outcomes. It is unclear whether fluid retention is simply a marker of the severity of organ failure or a mediator of events. In this article we review the evidence and provide a framework for future studies to refine these concepts further.
-
Endothelial cells play a key role in initiating and propagating the inflammatory response seen in ischemia, infections and sepsis. Situated in a key position between the epithelial cells and white blood cells (WBC), they interact and respond to signals from both cell types. ⋯ This last event is in large part responsible for a chronic reduction in regional perfusion, subsequent increased vulnerability to recurrent acute kidney injury, and acceleration of chronic kidney disease progression to end-stage renal disease. Glomerular endothelial dysfunction may lead to preglomerular shunting of blood flow allowing kidney blood flow to remain close to normal while resulting in a reduction in glomerular filtration rate.
-
Acute kidney injury (AKI) remains a major clinical challenge, especially in combination with acute lung injury (ALI). Clinical as well as experimental studies have provided evidence for clinically relevant kidney-lung interactions, ultimately leading to a drastic reduction in survival. The crosstalk between AKI and ALI is a consequence of both direct loss of normal organ function and inflammatory dysregulation resulting from each organ failure. ⋯ Lung protective ventilation, including low tidal volume ventilation, is a cornerstone in the management of ALI. This approach has been shown to attenuate both the direct mechanical effects of ventilation and the inflammatory response arising from ALI and mechanical ventilation, ultimately reducing the incidence of extrapulmonary organ failure. The fact that multiorgan failure is not only the sum of organ functions lost, but also includes inflammatory dysregulation together with a lack of treatment options greatly emphasizes the need for future research in this area.
-
Acute kidney injury (AKI) has been shown to be associated with progression to chronic kidney disease (CKD). Multiple studies have shown that subsets of AKI survivors are at high risk for progression to advanced stage CKD and death. Risk factors associated with AKI survivors progressing to CKD have been identified and include advanced age, diabetes mellitus, decreased baseline glomerular filtration rate, severity of AKI and a low concentration of serum albumin. ⋯ The maintenance phase of AKI is longer in duration in comparison to the initiation phase, and thus the logistics are more amenable to study. However, the mainstay of treatment for the maintenance phase of AKI (renal replacement therapy) has been tested extensively and increasing the dose of renal replacement therapy has not been shown to improve outcome. Therefore, the recovery phase of AKI may represent the best opportunity to intervene in the negative outcomes of AKI.
-
Acute kidney injury (AKI) can no longer be considered a surrogate marker for severity of illness. Recent epidemiologic data demonstrate the association of AKI and mortality. Even small decreases of kidney function are associated with increased mortality. ⋯ Infection and antimicrobial therapy can be the cause of AKI, but infection can also be a consequence of AKI. Finally, inadequate antimicrobial dosing probably plays an important role in the morbidity and mortality of AKI. These findings have led to a paradigm shift: patients die because of AKI rather than with AKI.