Contributions to nephrology
-
Fluid balance management in pediatric critically ill patients is a challenging task, since fluid overload (FO) in the pediatric ICU is considered a trigger of multiple organ dysfunction. In particular, the smallest patients with acute kidney injury are at highest risk to develop severe interstitial edema, capillary leak syndrome and FO. Several studies previously showed a statistical difference in the percentage of FO among children with severe renal dysfunction requiring renal replacement therapy. ⋯ The present review will shortly describe nutrition strategies in critically ill children, it will discuss dosages, benefits and drawbacks of diuretic therapy, and alternative diuretic/nephroprotective drugs currently proposed in the pediatric setting. Finally, specific modalities of pediatric extracorporeal fluid removal will be presented. Fluid management, furthermore, is not only the discipline of removing water: it should also address the way to optimize fluid infusions and, above all, one of the most important fluids infused to all ICU patients with renal dysfunction: parenteral nutrition.
-
Continuous hemoperfusion therapies are now widely used in critical care, and could prove to be life-saving for patients unable to receive regular hemoperfusion treatments. Unfortunately, due to the inherent difficulties in assessing the effects of treatment upon critically ill patients, the efficacy of this modality has yet to be proven. Instead of focusing exclusively on a particular form of continuous hemoperfusion or a direct comparison between the different types available, this report provides a general overview of the studies reporting on its efficacy across a wide range of conditions. The authors conclude that continuous hemoperfusion could be beneficial in some cases, but this is highly dependent upon the particular modality used.
-
Endotoxin, which consists of lipopolysaccharide (LPS), is an outer membrane component of the Gram-negative bacterial cell wall. Endotoxin in the blood stream from an infectious focus or through translocation from the gut plays an important role in the pathogenesis of severe sepsis and septic shock. It binds to monocytes and macrophages, activating them to trigger the production of a variety of mediators. ⋯ In Japan, PMX has been clinically used since 1994under the national health insurance system. It is estimated that over 80,000 patients have received PMX treatment in Japan. Not only has PMX been clinically used safely in Japan, but also in other countries.
-
It has been reported that various types of blood purification intended for the removal of humoral mediators, such as cytokines, were performed in patients with severe sepsis/septic shock. While high-volume hemofiltration, hemofiltration using high cut-off membrane filters, and direct hemoperfusion with a polymyxin-B immobilized column are widely used in the treatment of severe sepsis/septic shock, we perform continuous hemodiafiltration using a polymethylmethacrylate membrane hemofilter (PMMA-CHDF), which shows an excellent cytokine-adsorbing capacity, for the treatment of severe sepsis/septic shock. ⋯ Furthermore, PMMA-CHDF could remove anti-inflammatory cytokines such as IL-10 from bloodstream, suggesting that it might improve immunoparalysis as well. These findings suggest that PMMA-CHDF is useful for the treatment of patients with severe sepsis/septic shock as a cytokine modulator.
-
Acute heart failure (HF) and acute kidney injury (AKI) are common. These syndromes are each associated with considerable morbidity, mortality, and health resource utilization and are increasingly encountered. Fluid accumulation and overload are common themes in the pathophysiology and clinical course of both HF and AKI. ⋯ To date, the impact of fluid balance in both of these syndromes, more so with AKI, has likely been underappreciated. There is little to no data specifically on fluid balance in the cardiorenal syndrome, where acute/chronic heart disease can directly contribute to acute/chronic worsening of kidney function that likely exacerbates fluid homeostasis. Additional investigations are needed.