Inflammation
-
Bronchoalveolar lavage (BAL) is a useful technique for differential diagnosis of various interstitial lung diseases (ILDs) and is usually realized by analysis of the differential cell count. This study was conducted to estimate the value of bronchoalveolar lavage fluid (BALF) total cell count (TCC) in the diagnosis of ILD. We analyzed 237 BAL samples from patients with ILD: sarcoidosis (SA), idiopathic pulmonary fibrosis (IPF), cryptogenic organizing pneumonia (COP), hypersensitivity pneumonitis (HP), chronic eosinophilic pneumonia (CEP), and smoking-related ILD (sr-ILD). ⋯ The statistical analysis revealed significant differences in the BALF TCC between healthy controls and patients with SA, IPF, HP, COP, sr-ILD, and eosinophilic disorders (mean values 6.9 vs. 14.5, 22.5, 22.8, 20.7, 64.5, and 27.3 × 10(6), respectively). Logistic regression revealed a significant relation between the TCC and ILD diagnosis. We conclude that the TCC, as well as the value of total number of inflammatory cells, should be reported in the description of BAL.
-
Methicillin-resistant Staphylococcus aureus (MRSA) with exogenous cassette DNA containing the methicillin-resistant gene mecA (SCCmec) poses a problem as a drug-resistant bacterium responsible for hospital- and community-acquired infections. The frequency of MRSA detection has recently been increasing rapidly in Japan, and SCCmec has also been classified more diversely into types I-V. A rapid test is essential for early diagnosis and treatment of MRSA infections, but detection by conventional methods requires at least two days. ⋯ The results showed a diagnostic concordance rate of 91.7% for MRSA and methicillin-susceptible S. aureus between bacteriological examination and PCR lateral flow, and a high level of specificity in PCR lateral flow. In addition, a higher detection rate for S. aureus using the same sample was observed for PCR lateral flow (70.2%) than for bacteriological tests (48.6%). The above results show that PCR lateral flow for MRSA detection has high sensitivity, specificity, and speed, and its clinical application as a method for early diagnosis of MRSA infections appears to be feasible.
-
The aim of the present study was to determine whether timing of insulin administration influences the hepatic and serum proinflammatory and anti-inflammatory cytokines during endotoxemia stimulated by lipopolysaccharide (LPS). Eighty-one male Sprague-Dawley rats were divided into different time groups and insulin was given 30 min pre-LPS administration or hour 0, 1, 3, 6, 12, 24 after the induction of endotoxemia, respectively. Hepatic and serum proinflammatory cytokines IL-1β, IL-6, and TNF-α, and anti-inflammatory cytokine IL-10 were detected 24 and 48 h after the induction of endotoxemia. ⋯ Insulin has a protective role in systemic inflammatory response syndrome related to sepsis, such as downregulation of proinflammatory cytokines and upregulation of anti-inflammatory cytokine production. However, timing of insulin administrated may change its effect of inflammatory response in endotoxemic rats. Insulin administrated 6 h after LPS injection weaken the ability to protect inflammatory response related to sepsis.
-
Sepsis-related systemic inflammation frequently occurs in the critical care setting. Systemic inflammation is implicated in the progression of organ injury, which is associated with a high mortality rate. Recently, vitamin E and glutamic acid have been reported to attenuate inflammation. ⋯ ETS-GS blocked the CLP-induced septic shock response and protected against acute lung injury. This mechanism appeared to be mediated by the induction of PI3K-Akt and the inhibition of IκBα and MAPK phosphorylation. Given these results, ETS-GS shows promise as a potential therapeutic agent for sepsis.
-
Molecular mechanisms of sepsis-associated acute lung injury (ALI) are poorly defined. Since vascular endothelial growth factor (VEGF) is a potent vascular permeability and mitogenic factor, it might contribute to the development of ALI in sepsis. Thus, using lipopolysaccharide (LPS)-induced (15 mg/kg, intraperitoneal) endotoxemic rat model, we studied the timeline (1, 3, 6, and 10 h) of pulmonary VEGF expression and its signaling machinery. ⋯ Expression of signaling, pro- and or apoptotic factors after LPS administration were as follows: phosphorylated Akt, a downstream molecule was downregulated time dependently; endothelial nitric oxide synthase levels were significantly reduced; pro-apoptotic markers caspase 3 and Bax were upregulated whereas levels of Bcl-2 were downregulated. The present findings show that VEGF may play a role through the expression of Flt-1 in LPS-induced ALI. Moreover, downregulation of VEGF signaling cascade may account for LPS-induced apoptosis and impaired physiological angiogenesis in lung tissues, which in turn may contribute to the development of ALI induced by LPS.