Inflammation
-
Inflammation following hemorrhagic shock/resuscitation (HS/RES) induces acute lung injury (ALI). Dimethyl sulfoxide (DMSO) possesses anti-inflammatory and antioxidative capacities. We sought to clarify whether DMSO could attenuate ALI induced by HS/RES. ⋯ Significant increases in pulmonary expression of tumor necrosis factor-α (TNF-α), malondialdehyde, nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) confirmed that HS/RES induced pulmonary inflammation and oxidative stress. DMSO significantly attenuated the pulmonary inflammation and ALI induced by HS/RES. The mechanisms for this may involve reducing inflammation and oxidative stress through inhibition of pulmonary NF-κB, TNF-α, iNOS, and COX-2 expression.
-
Protective effects of ischemic postconditioning in myocardial ischemia/reperfusion (I/R) injury have been ever demonstrated, but the exact mechanisms remain unclear. Because of their multiplex activities, using natural pharmaceuticals seems to be clinically interesting. The aim of present study was to investigate the effects of troxerutin preconditioning and ischemic postconditioning on inflammatory responses after myocardial I/R injury in a rat model. ⋯ In fact, anti-inflammatory mechanisms of both treatments were associated with their protective effects against myocardial damages causing from I/R injury. Pretreatment with troxerutin as well as postconditioning can induce cardioprotection through prevention of the cell-cell interaction and release of inflammatory mediators, minimizing I/R pathological changes in myocardial cells. These two treatments may share same mechanisms in their actions since they showed no significant additive effects.
-
High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. ⋯ It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.
-
Amomum tsao-ko (A. tsao-ko) has been used as a traditional medicine for the treatment of infectious and digestive disorders. In the present study, we report the anti-inflammatory activity and molecular mechanism of 2,8-decadiene-1,10-diol (DDO) isolated from the extract of A. tsao-ko in lipopolysaccharide-stimulated RAW 264.7 cells. ⋯ These inhibitory effects of DDO on the expression of inflammatory proteins were found to be mediated through the inactivation of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase and p38(MAPK), and inhibition of nuclear factor-κB (NF-κB) pathways including degradation of inhibitor of κB-α and nuclear localization of NF-κB. Taken together, these findings demonstrate the pharmacological roles and molecular mechanisms of DDO in regulating inflammatory responses, and suggest further evaluation and development of DDO as a potent therapeutic agent for the treatment of inflammatory disorders.
-
The purpose of this study was to assess the protective effect of senegenin on acute lung injury (ALI) in rats induced by sepsis. Rat ALI model was reproduced by cecal ligation and puncture (CLP). All rats were randomly divided into five groups: group 1 (control), group 2 (CLP), group 3 (CLP + senegenin 15 mg/kg), group 4 (CLP + senegenin 30 mg/kg), and group 5 (CLP + senegenin 60 mg/kg). ⋯ Furthermore, senegenin administration inhibited the nuclear translocation of NF-κB in the lungs. These findings indicate that senegenin exerts protective effects on CLP-induced septic rats. Senegenin may be a potential therapeutic agent against sepsis.