Neuroscience letters
-
Neuroscience letters · May 2017
Comparative StudyInfants and adults have similar regional functional brain organization for the perception of emotions.
An infant's ability to perceive emotional facial expressions is critical for developing social skills. Infants are tuned to faces from early in life, however the functional organization of the brain that supports the processing of emotional faces in infants is still not well understood. We recorded electroencephalography (EEG) brain responses in 8-10 month old infants and adults and applied graph theory analysis on the functional connections to compare the network organization at the global and the regional levels underlying the perception of negative and positive dynamic facial expressions (happiness and sadness). ⋯ In contrast, at the regional levels, the functional characteristics of the frontal and parietal nodes were similar between infants and adults, suggesting that functional regional specialization for emotion perception is already established at this age. In addition, in both groups the occipital, parietal and temporal nodes appear to have the strongest influence on information flow within the network. These results suggest that while the global organization for the emotion perception of sad and happy emotions is still under development, the basic functional network organization at the regional level is already in place early in infancy.
-
Neuroscience letters · May 2017
Spinal dopaminergic involvement in the antihyperalgesic effect of antidepressants in a rat model of neuropathic pain.
Antidepressants such as tricyclic antidepressants, and serotonin noradrenaline reuptake inhibitors are a first-line treatment for neuropathic pain. Here, we aimed to determine the involvement of the spinal dopaminergic system in the antihyperalgesic effects of antidepressants in a rat model of neuropathic pain induced by spinal nerve ligation (SNL). The right L5 spinal nerve of male Sprague-Dawley rats was ligated under inhalation anesthesia to induce hyperalgesia. ⋯ Microdialysis revealed the dopamine levels in the spinal cord were increased after intraperitoneal injection of each antidepressant (10mg/kg). Furthermore, the dopamine content in homogenized spinal cord tissue were increased at 2 weeks after SNL and then subsequently declined. Our results suggest that the effect of antidepressants against neuropathic pain is related to modulation of not only noradrenalin and serotonin but also dopamine levels in the spinal cord.
-
Neuroscience letters · May 2017
CXCL13 regulates the trafficking of GluN2B-containing NMDA receptor via IL-17 in the development of remifentanil-induced hyperalgesia in rats.
This study aimed to investigate whether CXCL13 modulated the trafficking of NMDA receptor via interleukin (IL)-17 in a rat model of remifentanil-induced hyperalgesia (RIH).Although chemokines are crucial regulators of neuroinflammation, spinal N-methyl-d-aspartate (NMDA) receptor activation, and development of hypernociceptive process, little is known about specific pathogenesis and effective treatment. Inflammatory mediators are required for excitatory synaptic transmission in pathologic pain. ⋯ This study highlighted the contribution of IL-17 pathway in the trafficking of CXCL13-induced GluN2B-containing NMDA receptor in the pathogenesis of RIH.
-
Neuroscience letters · Apr 2017
High test-retest-reliability of pain-related evoked potentials (PREP) in healthy subjects.
Pain-related evoked potentials (PREP) is an established electrophysiological method to evaluate the signal transmission of electrically stimulated A-delta fibres. Although prerequisite for its clinical use, test-retest-reliability and side-to-side differences of bilateral stimulation in healthy subjects have not been examined yet. We performed PREP twice within 3-14days in 33 healthy subjects bilaterally by stimulating the dorsal hand. ⋯ N1-latency (r=0.35, p<0.05) and N1P1-amplitude (r=-0.45, p<0.05) correlated with age and additionally N1-latency correlated with arm length (r=0.45, p<0.001). In contrast, pain intensity during the stimulation had no effect on both N1-latency and N1P1-amplitude. In summary, PREP showed high test-retest-reliability and negligible side-to-side differences concerning the commonly used parameters N1-latency and N1P1-amplitude.
-
Neuroscience letters · Apr 2017
Therapeutic hypothermia attenuates global cerebral reperfusion-induced mitochondrial damage by suppressing dynamin-related protein 1 activation and mitochondria-mediated apoptosis in a cardiac arrest rat model.
Therapeutic hypothermia is effective to attenuate brain ischemia/reperfusion (I/R) injury after cardiac arrest, and multiple mechanisms have been proposed. Dynamin-related protein 1 (Drp1), a large GTPases of dynamin superfamily, predominantly controls mitochondrial fission and is related to IR-induced Cyt C release and apoptosis. However, the effect of therapeutic hypothermia on Drp1 and mitochondrial fission after cardiac arrest remains still unclear. ⋯ Transmission electron microscopy (TEM) also showed a change in morphology following therapeutic hypothermia after cardiac arrest. Moreover, therapeutic hypothermia could decrease the histopathological damage, inhibit the apoptosis of CA1 neurons and improve the survival and neurological outcomes at 72h after cardiac arrest. Taken together, our study demonstrates that therapeutic hypothermia is neuroprotective against global cerebral I/R injury, which is, at least partially, ascribed to the inhibition Drp1 and Cyt C expression and the protection of mitochondrial structure.