Neuroscience letters
-
Neuroscience letters · Jan 2017
Pharmacogenetics of lithium effects on glomerular function in bipolar disorder patients under chronic lithium treatment: a pilot study.
Bipolar disorder (BD) is a psychiatric disease characterized by alternating episodes of mania and depression. Lithium (Li) represents the mainstay treatment for BD, although a significant proportion of patients shows insufficient or no response. Li is also associated with potentially severe side effects, including renal effects. ⋯ Tag SNPs, located in genes previously shown to be associated with kidney dysfunction or Li mechanism of action, were selected and genotyped in a sample of 70 BD patients of Sardinian origin. SNP rs378448, located in Acid Sensing Ion Channel Neurona-1 (ACCN1) gene, showed a significant interaction with duration of Li treatment on eGFR (F2=3.623, p=0.033). Our preliminary findings suggest that rs378448 could predispose BD subjects to a detrimental effect of chronic Li treatment on kidney functioning.
-
Neuroscience letters · Jan 2017
Effects of repeated dizocilpine treatment on glutamatergic activity in the prefrontal cortex in an animal model of schizophrenia: An in vivo proton magnetic resonance spectroscopy study at 9.4T.
Repeated exposure to dizocilpine (MK-801) can be used as a model of schizophrenia that incorporates disease progression. Proton magnetic resonance spectroscopy (1H MRS) has been widely used to investigate schizophrenia-related alterations in glutamate (Glu). The purpose of this study was to investigate metabolic alterations in the prefrontal cortex (PFC) in an animal model of schizophrenia by using in vivo 1H MRS. ⋯ However, differences in Glu and N-acetylaspartate (NAA) levels between two times were significantly correlated (p<0.01). The results showed both decreased (in 6 of the 13 rats) and increased (7 of the 13 rats) levels of Glu and NAA, which suggested that these opposite metabolic alterations reflect two stage of disease progression. The results suggest that high-field and short TE in vivo 1H MRS can quantify Glu and Gln with reliably low level of cross-contamination and that repeated exposure to MK-801 induces the progressive development of schizophrenia.
-
Neuroscience letters · Jan 2017
Neo-adjuvant chemotherapy with cisplatin induces low expression of NMDA receptors and postoperative cognitive impairment.
Whether Neo-adjuvant chemotherapy can affect patients' postoperative brain function is not clear. In this study, we investigated the effect of preoperative cisplatin treatment on postoperative cognitive function and its possible mechanism in rats. Moreover, we also tested whether the NMDAR inhibitor memantine could attenuate cisplatin-induced alterations. 12-month-oldSprague-Dawley rats randomly received an intraperitoneal injection of either cisplatin once a week at a dose of 3mg/kg for three consecutive weeks or an equivalent volume of normal saline. ⋯ Furthermore, the protein expression levels of NMDA receptors, PSD95 and ERK1/2 were decreased in cisplatin group and memantine could up-regulate their expression. These results suggest that neo-adjuvant chemotherapy with cisplatin exacerbate the postoperative cognitive dysfunction in rats, and this may be caused by a lower expression of NMDA receptors in the hippocampus. Memantine could attenuate these alterations.
-
Amyotrophic lateral sclerosis (ALS) is an adult-onset, lethal, paralytic disorder caused by the degeneration of motor neurons. Our understanding of this disease has been greatly facilitated by studies of familial ALS caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Evidence indicates that misfolded wild-type SOD1 may also be pathogenic in sporadic ALS. ⋯ The most clinically promising are predicated on approaches that enhance degradation of RNA, such as anti-sense oligonucleotides (ASO) and RNA interference (RNAi); the latter include small inhibitory RNA (siRNA), short hairpin RNA (shRNA) and microRNA (miR). Agents such as shRNA and either native or synthetic miR are capable of permeating the central nervous system (CNS) and efficiently silencing genes in the brain and spinal cord. Here we review recent progress in silencing SOD1, focusing on studies using artificial shRNA or miRNA in combination with potent viral vector delivery systems to mediate SOD1 silencing within the CNS in transgenic SOD1G93A mice and non-human primates.
-
Neuroscience letters · Jan 2017
Randomized Controlled TrialCan transcranial direct current stimulation on the dorsolateral prefrontal cortex improves balance and functional mobility in Parkinson's disease?
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique increasingly explored for Parkinson's disease (PD). Although evidence is still inconsistent, there are preliminary findings suggesting its efficacy to improve motor function in individuals with PD, as the role of secondary motor areas remains unclear. The goal of this study was to investigate the effects of left dorsolateral prefrontal cortex (DLPFC) tDCS on balance and functional mobility of individuals with PD. ⋯ Our findings suggest that a-tDCS on the left DLPFC improves balance and functional mobility in comparison to sham-tDCS. Compensatory mechanisms that support motor function in individuals with PD may have been enhanced by a-tDCS on the DLPFC, leading to improved functional mobility and balance. Future trials should explore left DLPFC stimulation with larger samples and compare t-DCS protocols targeting several brain regions.