Blood
-
Multicenter Study Clinical Trial
BEACOPP chemotherapy is a highly effective regimen in children and adolescents with high-risk Hodgkin lymphoma: a report from the Children's Oncology Group.
Dose-intensified treatment strategies for Hodgkin lymphoma (HL) have demonstrated improvements in cure but may increase risk for acute and long-term toxicities, particularly in children. The Children's Oncology Group assessed the feasibility of a dose-intensive regimen, BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone) in children with high-risk HL (stage IIB or IIIB with bulk disease, stage IV). Rapidity of response was assessed after 4 cycles of BEACOPP. ⋯ Overall survival is 97%. Early intensification followed by less intense response-based therapy for rapidly responding patients is an effective strategy for achieving high event-free survival in children with high-risk HL. This trial is registered at http://www.clinicaltrials.gov as #NCT00004010.
-
P2Y₁₂, the G(i)-coupled platelet receptor for adenosine diphosphate (ADP), plays a central role in platelet function. Patients with congenital P2Y₁₂ defects display a mild to moderate bleeding diathesis, characterized by mucocutaneous bleedings and excessive post-surgical and post-traumatic blood loss. Defects of P2Y₁₂ should be suspected when ADP, even at high concentrations (≥ 10 μM), is unable to induce full, irreversible platelet aggregation. ⋯ The most important drawback of clopidogrel is its inability to inhibit adequately P2Y₁₂-dependent platelet function in approximately one-third of patients who are therefore not protected from major cardiovascular events. New drugs, such as prasugrel and ticagrelor, which effectively inhibit P2Y₁₂ in the majority of patients, proved to be more efficacious than clopdidogrel in preventing major cardiovascular events. Although they increase the incidence of major bleedings, the net clinical benefit is in favor of the new P2Y₁₂ inhibitors.
-
Over the past 60 years, the transfusion medicine community has attained significant knowledge regarding transfusion-related acute lung injury (TRALI) through the bedside to bench and back to the bedside model. First, at the bedside, TRALI causes hypoxia and noncardiogenic pulmonary edema, typically within 6 hours of transfusion. Second, bedside studies showed a higher incidence in plasma and platelet products than in red blood cell products (the fatal TRALI incidence for plasma is 1:2-300 000 products; platelet, 1:3-400 000; red blood cells, 1:25 002 000), as well as an association with donor leukocyte antibodies (∼ 80% of cases). ⋯ Antibodies, as well as alternate substances in blood products, result in neutrophil activation, which, in a susceptible patient, result in TRALI (2-hit hypothesis). Fourth, back to the bedside, policy changes based on results of these studies, such as minimizing use of plasma and platelet products from donors with leukocyte antibodies, have decreased the incidence of TRALI. Thus, steps to mitigate TRALI are in place, but a complete mechanistic understanding of the pathogenesis of TRALI and of which patients are at highest risk remains to be elucidated.
-
Fibrinogen adsorption on a surface results in the modification of its functional characteristics. Our previous studies revealed that fibrinogen adsorbs onto surfaces essentially in 2 different orientations depending on its concentration in the solution: "side-on" at low concentrations and "end-on" at high concentrations. In the present study, we analyzed the thrombin-mediated release of fibrinopeptides A and B (FpA and FpB) from fibrinogen adsorbed in these orientations, as well as from surface-bound fibrinogen-fibrin complexes prepared by converting fibrinogen adsorbed in either orientation into fibrin and subsequently adding fibrinogen. ⋯ The amount of FpB released from end-on adsorbed fibrinogen and from adsorbed fibrinogen-fibrin complexes was much higher than that of FpA. FpB is known as a potent chemoattractant, so its preferential release suggests a physiological purpose in the attraction of cells to the site of injury. The N-terminal portions of fibrin β chains including residues Bβ15-42, which are exposed after cleavage of FpB, have been implicated in many processes, including angiogenesis and inflammation.
-
Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. ⋯ HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.