Blood
-
Chronic graft-versus-host disease (cGVHD) is a common cause of morbidity and mortality in allogeneic bone marrow transplantation (alloBMT). However, effective strategies for the treatment of cGVHD have not been established. ⋯ Analysis of the recipient mice suggested that the protective effect of the recipient-type DC(regs) involved the peripheral generation of alloreactive CD4(+)CD25(+)Foxp3(+)regulatory T (T(R)) cells from donor-derived CD4(+)CD25(-)Foxp3(-) T cells. Thus, immunotherapy with DC(regs) is a promising strategy for the treatment of cGVHD in alloBMT mediated through the induction of a dominant tolerance involving CD4(+)CD25(+)Foxp3(+) T(R) cells.
-
Comparative Study
Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma.
The proteasome has emerged as an important target for cancer therapy with the approval of bortezomib, a first-in-class, reversible proteasome inhibitor, for relapsed/refractory multiple myeloma (MM). However, many patients have disease that does not respond to bortezomib, whereas others develop resistance, suggesting the need for other inhibitors with enhanced activity. We therefore evaluated a novel, irreversible, epoxomicin-related proteasome inhibitor, carfilzomib. ⋯ Importantly, carfilzomib showed increased efficacy compared with bortezomib and was active against bortezomib-resistant MM cell lines and samples from patients with clinical bortezomib resistance. Carfilzomib also overcame resistance to other conventional agents and acted synergistically with dexamethasone to enhance cell death. Taken together, these data provide a rationale for the clinical evaluation of carfilzomib in MM.
-
Entry into the cell cycle is mediated by cyclin-dependent kinase 4/6 (CDK4/6) activation, followed by CDK2 activation. We found that pharmacologic inhibition of the Flt3 internal tandem duplication (ITD), a mutated receptor tyrosine kinase commonly found in patients with acute myelogenous leukemia (AML), led to the down-regulation of cyclin D2 and D3 followed by retinoblastoma protein (pRb) dephosphorylation and G(1) cell-cycle arrest. This implicated the D-cyclin-CDK4/6 complex as a downstream effector of Flt3 ITD signaling. ⋯ In summary, the mechanism of cell-cycle arrest after treatment of Flt3 ITD AML with a Flt3 inhibitor involves down-regulation of cyclin D2 and D3. As such, CDK4/6 can be a therapeutic target in Flt3 ITD AML but also in primary Flt3 wt AML. Finally, acquired resistance to CDK4/6 inhibition can arise through activation CDK2.
-
In diffuse large B-cell lymphoma (DLBCL), previous studies have suggested that, while concordant bone marrow (BM) involvement confers a poor prognosis, discordant BM involvement does not. Whether this correlation is independent of the non-Hodgkin lymphoma International Prognostic Index (IPI) was previously unknown. We reviewed all DLBCL case histories from 1986 to 1997 at our center with complete staging, IPI data, and follow-up. ⋯ However, the poor survival associated with concordant BM involvement was independent of the IPI score (P = .002, Cox regression). We conclude that in patients with DLBCL, concordant but not discordant BM involvement confers a very poor clinical outcome. Furthermore, concordant BM involvement is an independent adverse prognostic factor.