Psychopharmacology
-
Multicenter Study
The effects of cannabinoids on serum cortisol and prolactin in humans.
Cannabis is one of the most widely used illicit substances, and there is growing interest in the therapeutic applications of cannabinoids. While known to modulate neuroendocrine function, the precise acute and chronic dose-related effects of cannabinoids in humans are not well-known. Furthermore, the existing literature on the neuroendocrine effects of cannabinoids is limited by small sample sizes (n = 6-22), heterogeneous samples with regard to cannabis exposure (lumping users and nonusers), lack of controlling for chronic cannabis exposure, differing methodologies, and limited dose-response data. Delta-9-tetrahydrocannabinol (Delta-9-THC) was hypothesized to produce dose-related increases in plasma cortisol levels and decreases in plasma prolactin levels. Furthermore, relative to controls, frequent users of cannabis were hypothesized to show altered baseline levels of these hormones and blunted Delta-9-THC-induced changes of these hormones. ⋯ These group differences may be related to the development of tolerance to the neuroendocrine effects of cannabinoids. Alternatively, these results may reflect inherent differences in neuroendocrine function in frequent users of cannabis and not a consequence of cannabis use.
-
Randomized Controlled Trial
Cognitive and psychomotor effects in males after smoking a combination of tobacco and cannabis containing up to 69 mg delta-9-tetrahydrocannabinol (THC).
Delta(9)-Tetrahydrocannabinol (THC) is the main active constituent of cannabis. In recent years, the average THC content of some cannabis cigarettes has increased up to approximately 60 mg per cigarette (20% THC cigarettes). Acute cognitive and psychomotor effects of THC among recreational users after smoking cannabis cigarettes containing such high doses are unknown. ⋯ Response time slowed down and motor control worsened, both linearly, with increasing THC doses. Consequently, cannabis with high THC concentrations may be a concern for public health and safety if cannabis smokers are unable to titrate to a high feeling corresponding to a desired plasma THC level.
-
Ecstasy (+/-3,4-methylenedioxymethamphetamine) is a widely used recreational drug that may damage the serotonin system and may entail neuropsychological dysfunctions. Few studies investigated predictors for ecstasy use. Self-reported impulsivity does not predict the initiation of ecstasy use; the question is if neuropsychological indicators of impulsivity can predict first ecstasy use. ⋯ Decision-making strategy on a gambling task was predictive for future use of ecstasy in female subjects. Differences in decision-making time between future ecstasy users and persistent ecstasy-naives may point to lower punishment sensitivity or higher impulsivity in future ecstasy users. Because differences were small, the clinical relevance is questionable.
-
Anandamide and Delta(9)-tetrahydrocannabinol (Delta(9)-THC) sometimes produce different discriminative stimulus effects and, therefore, appear to differ in their mechanism of action. In order to understand the widespread use of cannabis and the therapeutic potential of cannabinoids, mechanisms responsible for behavioral effects need to be identified. ⋯ Rimonabant can produce surmountable antagonism of the behavioral effects of not only Delta(9)-THC but also anandamide, methanandamide, and ACPA, and the interactions appear simple, competitive, and reversible. These cannabinoid agonists act at the same receptors to produce discriminative stimulus effects.
-
To characterize in vivo the high-affinity CB(1) cannabinoid receptor (CB(1)R) selective anandamide analog AM1346 [alkoxyacid amide of N-eicosa-tetraenylamine] using drug discrimination. Substitution tests involved Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and R-(+)-methanandamide (mAEA), a metabolically stable analog of anandamide (AEA), as well as the CB(1)R antagonist/inverse agonist rimonabant; D: -amphetamine and morphine were also examined to assess pharmacological specificity. ⋯ Unlike mAEA, the surmountable antagonism between rimonabant and AM1346 showed that the structural features of AEA can be modified to produce novel ligands that reduce the dissociation between the discriminative stimulus and rate decreasing effects of CB(1)R agonists derived from an AEA template.