Psychopharmacology
-
Randomized Controlled Trial
Subtle effects of ketamine on memory when administered following stimulus presentation.
N-methyl-D-aspartate (NMDA) receptor antagonists (e.g., PCP, ketamine) have been shown to impair learning/memory. Well documented in animal models, only limited research in humans has been reported. Findings to date are similar to results of animal studies; however, antagonists are typically administered before the learning experience. This may be problematic as memory failure could be secondary to inattention induced by the psychotomimetic effects of these drugs and/or alterations in sensory processing which can degrade the quality of the stimulus, thereby affecting the accuracy of recall. ⋯ Findings suggest that aspects of memory consolidation are affected by drugs that interfere with NMDA receptor function.
-
Comparative Study
Characterization of noradrenaline release in the locus coeruleus of freely moving awake rats by in vivo microdialysis.
The origin and regulation of noradrenaline (NA) in the locus coeruleus (LC) is unknown. ⋯ Synaptic processes underlying NA release in the LC are similar to those in noradrenergic terminal areas. NA in the LC could represent local somatodendritic release, but also the presence of neurotransmitter release from collateral axon terminals.
-
Acute systemic ethanol administration is known to elevate plasma and cerebral levels of neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one (3alpha, 5alpha-THP; allopregnanolone) to a concentration sufficient to potentiate GABA(A) receptors. We have earlier demonstrated that 3alpha, 5alpha-THP mediates the antidepressant-like effect of ethanol in Porsolt forced swim test. ⋯ Our results demonstrated the contributory role of neuroactive steroid 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol. It is speculated that ethanol-induced modulation of endogenous GABAergic neurosteroids, especially 3alpha, 5alpha-THP, might be crucial pertinent to the etiology of 'trait' anxiety (tension reduction) and ethanol abuse.
-
In cell culture systems, agonists can promote the phosphorylation and internalization of receptors coupled to G proteins (GPCR), leading to their desensitization. However, in the CNS opioid agonists promote a profound desensitization of their analgesic effects without diminishing the presence of their receptors in the neuronal membrane. Recent studies have indicated that CNS proteins of the RGS family, specific regulators of G protein signalling, may be involved in mu-opioid receptor desensitization in vivo. ⋯ In the CNS, the RGS proteins control the activity of mu opioid receptors through GAP-dependent (RGS-R4 and RGS-Rz) as well as by GAP-independent mechanisms (RGS-R7). As a result, they can both antagonize effectors and desensitize receptors under certain circumstances.
-
(1S,2S,5R,6S)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740) is a potent and selective agonist for group II metabotropic glutamate (mGlu2 and mGlu3) receptors, with anxiolytic-like activity in animal and human models, and efficacy in anxiety patients. However, the lack of mGlu2 or mGlu3 receptor specific agonists has prevented in vivo characterization of individual functions of these two receptors in mediating the anxiolytic-like effects of LY354740. ⋯ The activation of both mGlu2 and mGlu3 receptors by LY354740 appears to be required for anxiolytic-like activity in the EPM test in mice. These studies serve as a foundation for additional studies on underlying circuits, brain structures, and receptor subtypes involved in the anxiolytic-like actions of mGlu receptor active agents, and the design of future drugs for anxiety disorders in humans.