Neuropathology and applied neurobiology
-
Neuropathol. Appl. Neurobiol. · Aug 2013
The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain ageing and Alzheimer's disease.
Cerebral amyloid angiopathy (CAA) represents the deposition of amyloid β protein (Aβ) in the meningeal and intracerebral vessels. It is often observed as an accompanying lesion of Alzheimer's disease (AD) or in the brain of elderly individuals even in the absence of dementia. CAA is largely age-dependent. In subjects with severe CAA a higher frequency of vascular lesions has been reported. The goal of our study was to define the frequency and distribution of CAA in a 1-year autopsy population (91 cases) from the Department of Internal Medicine, Rehabilitation, and Geriatrics, Geneva. ⋯ The present data show that CAA plays a role in the development of microvascular lesions in the ageing brain, but cannot be considered as the most important factor in this vascular pathology, suggesting that other mechanisms also contribute importantly to the pathogenesis of microvascular changes.
-
Neuropathol. Appl. Neurobiol. · Aug 2013
Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia.
Adult neurogenesis is well described in the subventricular zone of the lateral ventricle walls and in the subgranular zone of the hippocampal dentate gyrus. However, recent studies indicate that self-renewal of neural stem cells (NSCs) is not restricted to these niches, but that diverse areas of the adult brain are capable of generating new neurones and responding to various pathological alterations. In particular, NSCs have been identified in circumventricular organs (CVOs) of the adult mouse brain. ⋯ Our findings are compatible with a scenario where CVOs may serve as a further source of NSCs in the adult human brain and may contribute to neurogenesis and brain plasticity in the context of brain injury.
-
Neuropathol. Appl. Neurobiol. · Jun 2013
Multicenter StudyImplementation of a multi-institutional diffuse intrinsic pontine glioma autopsy protocol and characterization of a primary cell culture.
Diffuse intrinsic pontine glioma (DIPG) is a fatal paediatric malignancy. Tumour resection is not possible without serious morbidity and biopsies are rarely performed. The resulting lack of primary DIPG material has made preclinical research practically impossible and has hindered the development of new therapies for this disease. The aim of the current study was to address the lack of primary DIPG material and preclinical models by developing a multi-institutional autopsy protocol. ⋯ Here we show that obtaining post mortem DIPG tumour tissue for research purposes is feasible with short delay, and that the autopsy procedure is satisfying for participating parents and can be suitable for the development of preclinical DIPG models.
-
Neuropathol. Appl. Neurobiol. · Jun 2012
ReviewReview: personalized mice: modelling the molecular heterogeneity of medulloblastoma.
Medulloblastoma, the most common malignant paediatric brain tumour, is thought to arise from mutations in progenitors or stem cells in the cerebellum. Recent molecular analyses have highlighted the heterogeneity of these tumours, and demonstrated that they can be classified into at least four major subtypes that differ in terms of gene expression, genomic gains and losses, epidemiology and patient outcome. Along with analysis of human tumours, a variety of animal models of medulloblastoma have been developed using transgenic and knockout technology as well as somatic gene delivery. ⋯ But the degree to which current models recapitulate the heterogeneity of the human disease remains unclear. Here we review the recent literature on the genomics of medulloblastoma and discuss the relationship of mouse models to the subtypes of the disease. Judicious use of existing models, and generation of additional models for poorly studied subtypes of medulloblastoma, will increase our understanding of tumour biology and allow evaluation of novel approaches to treatment of the disease.
-
Neuropathol. Appl. Neurobiol. · Feb 2012
ReviewThe neuropathology, pathophysiology and genetics of multiple system atrophy.
Multiple system atrophy (MSA) is an unrelenting, sporadic, adult-onset, neurodegenerative disease of unknown aetiology. Its clinically progressive course is characterized by a variable combination of parkinsonism, cerebellar ataxia and/or autonomic dysfunction. Neuropathological examination often reveals gross abnormalities of the striatonigral and/or olivopontocerebellar systems, which upon microscopic examination are associated with severe neuronal loss, gliosis, myelin pallor and axonal degeneration. ⋯ These are the hallmark neuropathological lesion of MSA and are thought to play a central role in the pathogenesis of the disease. In this review, neuropathological features of MSA are described in detail, along with recent advances in the pathophysiology and genetics of the disease. Our current knowledge of the expression and accumulation of α-synuclein, and efforts to model the disease in vitro and in vivo, are emphasized in this paper and have helped formulate a working hypothesis for the pathogenesis of MSA.