Spine
-
Biomechanical tensile testing of perinatal, neonatal, and pediatric cadaveric cervical spines to failure. ⋯ Cervical spine tensile stiffness-to-failure and load-to-failure increased nonlinearly, whereas normalized displacement at failure decreased nonlinearly, from birth to adulthood. Pronounced ligamentous laxity observed at younger ages in the O-C2 segment quantitatively supports the prevalence of spinal cord injury without radiographic abnormality in the pediatric population. This study provides important and previously unavailable data for validating pediatric cervical spine models, for evaluating current scaling techniques and animal surrogate models, and for the development of more biofidelic pediatric crash test dummies.
-
Immunohistological analysis of spinal glial cells and analysis of pain behavior in the rat neuropathic pain model were investigated to clarify the function of tumor necrosis factor (TNF)-α receptors p55 type 1 and p75 type 2. ⋯ These results indicate that the microglial TNF-α p55 pathway played a more important role than the TNF-α p75 pathway in the pathogenesis of peripheral nerve injury pain. This suggests that future studies seeking to clarify neuropathic pain should target TNF-α and p55 receptors in microglia.
-
Case Reports
Aseptic loosening of pedicle screw as a result of metal wear debris in a pediatric patient.
This is a case report. ⋯ Metal wear debris can form in pediatric patients during the healing process after spinal fusions or when pseudarthrosis is present. Clinically, this manifests as back pain with a possible aseptic inflammatory abscess. Hardware removal can achieve resolution of symptoms and regression of inflammation.