Intensive care medicine
-
Acute respiratory distress syndrome (ARDS) is defined by the association of bilateral infiltrates and hypoxaemia following an initial insult. Although a new definition has been recently proposed (Berlin definition), there are various forms of ARDS with potential differences regarding their management (ventilator settings, prone positioning use, corticosteroids). ARDS can be caused by various aetiologies, and the adequate treatment of the responsible cause is crucial to improve the outcome. ⋯ CT scan is fundamental when there is a suspicion of intra-abdominal sepsis and in some cases of pneumonia. Ultrasonography is important not only in evaluating biventricular function but also in identifying pleural effusions and pneumothorax. The definition of ARDS remains clinical and the main objective of the diagnostic workup should be to be focused on identification of its aetiology, especially a treatable infection.
-
The baby lung was originally defined as the fraction of lung parenchyma that, in acute respiratory distress syndrome (ARDS), still maintains normal inflation. Its size obviously depends on ARDS severity and relates to the compliance of the respiratory system. CO2 clearance and blood oxygenation primarily occur within the baby lung. ⋯ Positive end expiratory pressure also increases the baby lung size, both allowing better inflation of already open units and adding new pulmonary units. Viewed as surrogates of stress and strain, tidal volume and plateau pressures are better tailored to baby lung size than to ideal body weight. Although less information is available for the baby lung during spontaneous breathing efforts, the general principles regulating the safety of ventilation are also applicable under these conditions.
-
Imaging has become increasingly important across medical specialties for diagnostic, monitoring, and investigative purposes in acute respiratory distress syndrome (ARDS). ⋯ The future of imaging in critical care will probably develop in two main directions: easily accessible imaging techniques that can be used at the bedside and sophisticated imaging methods that will be used to aid in difficult diagnostic cases or to advance our understanding of the pathogenesis and pathophysiology of an array of critical illnesses.
-
In the last 20 years, survival among patients with acute respiratory distress syndrome (ARDS) has increased substantially with advances in lung-protective ventilation and resuscitation. Building on this success, personalizing mechanical ventilation to patient-specific physiology for enhanced lung protection will be a top research priority for the years ahead. However, the ARDS research agenda must be broader in scope. ⋯ This expanded scope necessitates standard acquisition of highly granular biological, physiological, and clinical data across studies to identify biologically distinct subgroups that may respond differently to a given intervention. Clinical trials will need to consider enrichment strategies and incorporate long-term functional outcomes. Tremendous investment in research infrastructure and global collaboration will be vital to fulfilling this agenda.