Intensive care medicine
-
Intensive care medicine · Oct 2022
ReviewMachines that help machines to help patients: optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software.
Intensive care unit (ICU) patients with end-organ failure will require specialised machines or extracorporeal therapies to support the failing organs that would otherwise lead to death. ICU patients with severe acute kidney injury may require renal replacement therapy (RRT) to remove fluid and wastes from the body, and patients with severe cardiorespiratory failure will require extracorporeal membrane oxygenation (ECMO) to maintain adequate oxygen delivery whilst the underlying pathology is evaluated and managed. The presence of ECMO and RRT machines can further augment the existing pharmacokinetic (PK) alterations during critical illness. ⋯ Therefore, an in-depth understanding on potential PK changes during ECMO and/or RRT is required to inform antimicrobial dosing strategies in patients receiving ECMO and/or RRT. In this narrative review, we aim to discuss the potential impact of ECMO and RRT on the PK of antimicrobials and antimicrobial dosing requirements whilst receiving these extracorporeal therapies. The potential benefits of therapeutic drug monitoring (TDM) and dosing software to facilitate antimicrobial therapy for critically ill patients receiving ECMO and/or RRT are also reviewed and highlighted.
-
Intensive care medicine · Oct 2022
ReviewExtracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions.
Extracorporeal carbon dioxide removal (ECCO2R) is a form of extracorporeal life support (ECLS) largely aimed at removing carbon dioxide in patients with acute hypoxemic or acute hypercapnic respiratory failure, so as to minimize respiratory acidosis, allowing more lung protective ventilatory settings which should decrease ventilator-induced lung injury. ECCO2R is increasingly being used despite the lack of high-quality evidence, while complications associated with the technique remain an issue of concern. This review explains the physiological basis underlying the use of ECCO2R, reviews the evidence regarding indications and contraindications, patient management and complications, and addresses organizational and ethical considerations. The indications and the risk-to-benefit ratio of this technique should now be carefully evaluated using structured national or international registries and large randomized trials.
-
Intensive care medicine · Oct 2022
ReviewIntracranial pressure: current perspectives on physiology and monitoring.
Intracranial pressure (ICP) monitoring is now viewed as integral to the clinical care of many life-threatening brain insults, such as severe traumatic brain injury, subarachnoid hemorrhage, and malignant stroke. It serves to warn of expanding intracranial mass lesions, to prevent or treat herniation events as well as pressure elevation which impedes nutrient delivery to the brain. It facilitates the calculation of cerebral perfusion pressure (CPP) and the estimation of cerebrovascular autoregulatory status. ⋯ ICP is typically assessed invasively but a number of emerging, non-invasive technologies with inherently lower risk are showing promise. In selected cases, additional neuromonitoring can be used to assist in the interpretation of ICP monitoring information and adapt directed treatment accordingly. Additional efforts to expand the evidence base relevant to ICP monitoring, related technologies and management remain a high priority in neurosurgery and neurocritical care.
-
Intensive care medicine · Oct 2022
ReviewMachines that save lives in the intensive care unit: the ultrasonography machine.
This article highlights the ultrasonography machine as a machine that saves lives in the intensive care unit. We review its utility in the limited resource intensive care unit and some elements of machine design that are relevant to both the constrained operating environment and the well-resourced intensive care unit. As the ultrasonography machine can only save lives, if is operated by a competent intensivist; we discuss the challenges of training the frontline clinician to become competent in critical care ultrasonography followed by a review of research that supports its use.