Intensive care medicine
-
Intensive care medicine · Oct 2022
ReviewIntracranial pressure: current perspectives on physiology and monitoring.
Intracranial pressure (ICP) monitoring is now viewed as integral to the clinical care of many life-threatening brain insults, such as severe traumatic brain injury, subarachnoid hemorrhage, and malignant stroke. It serves to warn of expanding intracranial mass lesions, to prevent or treat herniation events as well as pressure elevation which impedes nutrient delivery to the brain. It facilitates the calculation of cerebral perfusion pressure (CPP) and the estimation of cerebrovascular autoregulatory status. ⋯ ICP is typically assessed invasively but a number of emerging, non-invasive technologies with inherently lower risk are showing promise. In selected cases, additional neuromonitoring can be used to assist in the interpretation of ICP monitoring information and adapt directed treatment accordingly. Additional efforts to expand the evidence base relevant to ICP monitoring, related technologies and management remain a high priority in neurosurgery and neurocritical care.
-
Intensive care medicine · Oct 2022
ReviewThe physiological underpinnings of life-saving respiratory support.
Treatment of respiratory failure has improved dramatically since the polio epidemic in the 1950s with the use of invasive techniques for respiratory support: mechanical ventilation and extracorporeal respiratory support. However, respiratory support is only a supportive therapy, designed to "buy time" while the disease causing respiratory failure abates. It ensures viable gas exchange and prevents cardiorespiratory collapse in the context of excessive loads. ⋯ Lung (and more recently also diaphragm) protective ventilation strategies include the use of extracorporeal respiratory support when the risk of ventilation becomes excessive. This review provides an overview of the historical background of respiratory support, pathophysiology of respiratory failure and rationale for respiratory support, iatrogenic consequences from mechanical ventilation, specifics of the implementation of mechanical ventilation, and role of extracorporeal respiratory support. It highlights the need for appropriate monitoring to estimate risks and to individualize ventilation and sedation to provide safe respiratory support to each patient.
-
Extracorporeal membrane oxygenation (ECMO) is increasingly being used for patients with severe respiratory failure and has received particular attention during the coronavirus disease 2019 (COVID-19) pandemic. Evidence from two key randomized controlled trials, a subsequent post hoc Bayesian analysis, and meta-analyses support the interpretation of a benefit of ECMO in combination with ultra-lung-protective ventilation for select patients with very severe forms of acute respiratory distress syndrome (ARDS). During the pandemic, new evidence has emerged helping to better define the role of ECMO for patients with COVID-19. ⋯ Known risk factors for mortality in COVID-19 and non-COVID-19 patients are higher patient age, concomitant extra-pulmonary organ failures or malignancies, prolonged mechanical ventilation before ECMO, less experienced treatment teams and lower ECMO caseloads in the treating center. ECMO is a high resource-dependent support option; therefore, it should be used judiciously, and its availability may need to be constrained when resources are scarce. More evidence from high-quality research is required to better define the role and limitations of ECMO in patients with severe COVID-19.
-
Intensive care medicine · Oct 2022
ReviewHow to improve intubation in the intensive care unit. Update on knowledge and devices.
Tracheal intubation in the critically ill is associated with serious complications, mainly cardiovascular collapse and severe hypoxemia. In this narrative review, we present an update of interventions aiming to decrease these complications. MACOCHA is a simple score that helps to identify patients at risk of difficult intubation in the intensive care unit (ICU). ⋯ All these elements can be integrated in a bundle. An airway management algorithm should be adopted in each ICU and adapted to the needs, situation and expertise of each operator. Videolaryngoscopes should be used by experienced operators.