Intensive care medicine
-
Intensive care medicine · Oct 2024
ReviewCausal inference can lead us to modifiable mechanisms and informative archetypes in sepsis.
Medical progress is reflected in the advance from broad clinical syndromes to mechanistically coherent diagnoses. By this metric, research in sepsis is far behind other areas of medicine-the word itself conflates multiple different disease mechanisms, whilst excluding noninfectious syndromes (e.g., trauma, pancreatitis) with similar pathogenesis. New technologies, both for deep phenotyping and data analysis, offer the capability to define biological states with extreme depth. ⋯ Genetic studies can directly illuminate drug targets, but in addition they create a reservoir of statistical power that can be divided many times among potential patient subgroups to test for mechanistic coherence, accelerating discovery of modifiable mechanisms for testing in trials. Novel approaches, such as subgroup identification in-flight in clinical trials, will improve efficiency. Within the next decade, we expect ongoing large-scale collaborative projects to discover and test therapeutically relevant sepsis archetypes.
-
Intensive care medicine · Oct 2024
ReviewAccuracy of continuous glucose monitoring systems in intensive care unit patients: a scoping review.
Glycemic control poses a challenge in intensive care unit (ICU) patients and dysglycemia is associated with poor outcomes. Continuous glucose monitoring (CGM) has been successfully implemented in the type 1 diabetes out-patient setting and renewed interest has been directed into the transition of CGM into the ICU. This scoping review aimed to provide an overview of CGM accuracy in ICU patients to inform future research and CGM implementation. ⋯ In this scoping review of CGM accuracy in the ICU, we found great diversity in accuracy reporting. Accuracy varied depending on CGM and comparator, and may be better for intravascular CGM and potentially lower during hypoglycemia.