Toxicology letters
-
N-Methyl-N-nitrosourea (MNU) is an alkylating agent having genotoxic potential to cause gene mutations and antiproliferative cytotoxic activity on developing brains to cause microcephaly by mid-gestational exposure in rodents. This study investigated the transient genotoxic and cytocidal effect of MNU at the beginning of the subgranular zone (SGZ) formation in the hippocampal dentate gyrus on neurogenesis in later life using rats. Pregnant rats were injected with MNU at 0 (vehicle controls), 1 or 3mg/kg body weight intraperitoneally from gestational day (GD) 18 to GD 20 once a day. ⋯ Increases of Calb1(+) interneurons on weaning and SGZ cell proliferation later on may reflect compensatory mechanism for MNU-induced aberrant neurogenesis. Considering the lack of effects on PND 77, MNU may mainly target transient populations of highly proliferative progenitor cells without affecting their stem cells to undergo progenitor production. Protective and plasticity mechanism may be operated against genotoxic agents on hippocampal neurogenesis.
-
N-Methyl-N-nitrosourea (MNU) is an alkylating agent having antiproliferative cytotoxity targeting the neural stem/progenitor cells to cause microcephaly by maternal exposure. This study investigated the effect of transient exposure to MNU on the process of hippocampal neurogenesis in later life using mice. Pregnant mice received a single injection of MNU at 0, 5 and 10 mg/kg body weight, intraperitoneally on gestational day 14, and their offspring were examined on postnatal day (PND) 21 and PND 77. ⋯ Thus, apart from the massive cell killing at the migratory stream causing microcephaly, MNU may decrease Dcx(+) cells reflecting disruption of the differentiation process of late-stage neuronal progenitors and immature granule cells through defective molecular functions by gene mutations. Increase of reelin(+) and Pvalb(+) cells may reflect the disruption of neurogenesis and following neuronal migration. All of the granule cell lineage and interneuron changes disappeared at the adult stage on PND 77 suggesting that MNU mainly targets transient populations of highly proliferative progenitor cells but hardly affects their stem cells having self-renewal ability.
-
Acetaminophen (APAP) overdose induces apoptosis-inducing factor (AIF)-dependent necroptosis, but the mechanism remains obscure. The present study investigated the role of receptor interacting protein (RIP)1, a critical mediator of necroptosis, on AIF-dependent necroptosis during APAP-induced acute liver failure. Mice were intraperitoneally injected with APAP (300 mg/kg). ⋯ In addition, Nec-1 had little effect on APAP-induced hepatic GSH depletion at early stage. Taken together, these results suggest that RIP1 is involved in APAP-induced necroptosis. Nec-1 is an effective antidote for APAP-induced acute liver failure.
-
Comparative Study
Use of a glyphosate-based herbicide-induced nephrotoxicity model to investigate a panel of kidney injury biomarkers.
Accidental or intentional ingestion of glyphosate surfactant-based herbicides, like Roundup(®), leads to nephrotoxicity as well as death. In this study, a panel of kidney injury biomarkers was evaluated in terms of suitability to detect acute kidney injury and dysfunction. The Roundup(®) intoxication model involved oral administration of glyphosate to rats at dose levels of 250, 500, 1200 and 2500 mg/kg. ⋯ By Receiver Operating Characteristic (ROC) analysis of the selected biomarkers, only urinary kidney injury molecule-1 (KIM-1) best predicted histological changes at 8h (best cut-off point>0.00029 μg/ml). Plasma creatinine performed better than other biomarkers at 24 h (best cut-off point>0.21 mg/dl). Urinary KIM-1 was the best early biomarker of kidney injury in this glyphosate-induced nephrotoxicity model.
-
Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. ⋯ Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.