Toxicology letters
-
The in vitro cardiac and vascular pharmacology of Malo maxima, a newly described jellyfish suspected of causing Irukandji syndrome in the Broome region of Western Australia, was investigated in rat tissues. In left atria, M. maxima crude venom extract (CVE; 1-100μg/mL) caused concentration-dependent inotropic responses which were unaffected by atropine (1μM), but significantly attenuated by tetrodotoxin (TTX; 0.1μM), propranolol (1μM), Mg(2+) (6mM) or calcitonin gene-related peptide antagonist (CGRP(8-37); 1μM). CVE caused no change in right atrial rate until 100μg/mL, which elicited bradycardia. ⋯ CVE-induced maximum contractions were attenuated by C. fleckeri antivenom (-22%) or benextramine (-49%). M. maxima CVE appears to activate the sympathetic, but not parasympathetic, nervous system and to stimulate sensory nerve CGRP release in left atria and resistance arteries. These effects are consistent with the catecholamine excess thought to cause Irukandji syndrome, with additional actions of CGRP release.
-
Rosiglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist of the thiazolidinedione class, is a major insulin-sensitizing drug widely used to treat type-2 diabetes. Rosiglitazone causes myocardial hypertrophy in rodents and increases the risk of cardiac events in man. To better characterize its cardiac effects, male Wistar rats were orally administered 0, 10 or 80 mg/kg/day rosiglitazone. ⋯ Most importantly, serum cTnI concentrations in 5/9 rats after 7 days of dosing at 80 mg/kg/day were above the upper limit of serum cTnI concentration. cTnI concentrations after 14 days of dosing were similar between rats given the vehicle and rosiglitazone at 80 mg/kg. This is the first study to detect increases of serum cTnI concentrations in rats administered rosiglitazone. In light of reported cardiac events in patients chronically dosed with PPARγ agonists, our results support serum cTnI concentrations as an early biomarker of cardiac liability.
-
Thirty-four adult patients with severe organophosphorus compounds (OP) poisoning requiring artificial ventilation were enrolled in a clinical study and received atropine and obidoxime (250 mg i.v., followed by 750 mg/24 h) as antidotal treatment. Here, we re-analyzed the cholinesterase status (red blood cell acetylcholinesterase (RBC-AChE) activity, reactivatability of RBC-AChE, and plasma butyrylcholinesterase (Pl-BChE) activity) in relation to the neuromuscular transmission (NMT) data. When RBC-AChE activity ranged between 100% and 30% NMT was unimpaired after tetanic stimulation with frequencies up to 50 Hz. ⋯ Completely aged RBC-AChE as indicated by loss of reactivatability loses its guidance function. Then, steadily increasing Pl-BChE activity suggests lack of circulating poison. One-week later, neuromuscular transmission may be largely normal and patients could be weaned from the respirator if other complications are not withstanding.
-
Comparative Study
Characteristics and comparative severity of respiratory response to toxic doses of fentanyl, methadone, morphine, and buprenorphine in rats.
Opioids are known to induce respiratory depression. We aimed to characterize in rats the effects of four opioids on arterial blood gases and plethysmography after intraperitoneal administration at 80% of their LD(50) in order to identify opioid molecule-specific patterns and classify response severity. Opioid-receptor (OR) antagonists, including intravenous 10 mg kg(-1)-naloxonazine at 5 min [mu-OR antagonist], subcutaneous 30 mg kg(-1)-naloxonazine at 24 h [mu1-OR antagonist], subcutaneous 3 mg kg(-1)-naltrindole at 45 min [delta-OR antagonist], and subcutaneous 5 mg kg(-1)-Nor-binaltorphimine at 6 h [kappa-OR antagonist] were pre-administered to test the role of each OR. ⋯ Opioid-induced hypoxemia as well as increases in T(I) and T(E) are caused by mu-OR, while delta and kappa-OR roles appear limited, depending on the specific opioid. Regarding severity of opioid-induced respiratory effects at 80% of their LD(50), all drugs increased T(I). Methadone and fentanyl induced hypoxemia, hypercapnia, and T(E) increases, morphine caused both hypoxemia and hypercapnia while buprenorphine caused only hypoxemia.
-
Based on a production accident Viracept (nelfinavir mesilate) tablets, an HIV protease inhibitor supplied by Roche outside the US, Canada and Japan was contaminated with relatively high levels of ethyl methanesulfonate (EMS) for at most 3 months in spring of 2007. On the basis of a wide variety of toxicological data including critical experiments for mutation induction under chronic exposure conditions and cross-species exposure scaling experiments to extrapolate to humans, we estimate the added risk of adverse effects (cancer, birth abnormalities, heritable defects) in any individual patient accidentally exposed to EMS via contaminated Viracept tablets in the context of this production accident as essentially zero. Of critical important for this risk assessment are pivotal in vivo genotoxicity studies (MNT, MutaMouse) providing evidence for 'hockey-stick', like dose-response relationships for the risk defining induction of gene mutations and chromosomal damage by EMS [Gocke, E., Müller, L., Pfister, T., Buergin, H., 2009a. ⋯ Potential adverse effects of EMS such as cancer, birth abnormalities and heritable effects are considered to be sequelae of its genotoxic activity. Hence, the thresholded dose-response relationships should also apply to these endpoints. We also provide a comprehensive discussion of the specific disease situation of the HIV infected target population and potential influences of co-medications on the susceptibilities and repair capacities of EMS induced DNA lesions.