The Journal of physiology
-
The Journal of physiology · Jul 2018
Age-related changes in late I-waves influence motor cortex plasticity induction in older adults.
The response to neuroplasticity interventions using transcranial magnetic stimulation (TMS) is reduced in older adults, which may be due, in part, to age-related alterations in interneuronal (I-wave) circuitry. The current study investigated age-related changes in interneuronal characteristics and whether they influence motor cortical plasticity in older adults. While I-wave recruitment was unaffected by age, there was a shift in the temporal characteristics of the late, but not the early I-waves. Using I-wave periodicity repetitive TMS (iTMS), we showed that these differences in I-wave characteristics influence the induction of cortical plasticity in older adults. ⋯ Previous research shows that neuroplasticity assessed using transcranial magnetic stimulation (TMS) is reduced in older adults. While this deficit is often assumed to represent altered synaptic modification processes, age-related changes in the interneuronal circuits activated by TMS may also contribute. Here we assessed age-related differences in the characteristics of the corticospinal indirect (I) waves and how they influence plasticity induction in primary motor cortex. Twenty young (23.7 ± 3.4 years) and 19 older adults (70.6 ± 6.0 years) participated in these studies. I-wave recruitment was assessed by changing the direction of the current used to activate the motor cortex, whereas short-interval intracortical facilitation (SICF) was recorded to assess facilitatory I-wave interactions. In a separate study, I-wave periodicity TMS (iTMS) was used to examine the effect of I-wave latency on motor cortex plasticity. Data from the motor-evoked potential (MEP) onset latency produced using different coil orientations suggested that there were no age-related differences in preferential I-wave recruitment (P = 0.6). However, older adults demonstrated significant reductions in MEP facilitation at all 3 SICF peaks (all P values < 0.05) and a delayed latency of the second and third SICF peaks (all P values < 0.05). Using I-wave intervals that were optimal for young and older adults, these changes in the late I-waves were shown to influence the plasticity response in older adults after iTMS. These findings suggest that temporal characteristics are delayed for the late I-waves in older adults, and that optimising TMS interventions based on I-wave characteristics may improve the plasticity response in older adults.
-
The brain is vulnerable to damage from too little or too much blood flow. A physiological mechanism termed cerebral autoregulation (CA) exists to maintain stable blood flow even if cerebral perfusion pressure (CPP) is changing. A robust method for assessing CA is not yet available. There are still some problems with the traditional measure, the pressure reactivity index (PRx). We introduce a new method, the wavelet transform method (wPRx), to assess CA using data from two sets of controlled hypotension experiments in piglets: one set had artificially manipulated arterial blood pressure (ABP) oscillations; the other group were spontaneous ABP waves. A significant linear relationship was found between wPRx and PRx in both groups, with wPRx providing a more stable result for the spontaneous waves. Although both methods showed similar accuracy in distinguishing intact and impaired CA, it seems that wPRx tends to perform better than PRx, although not significantly so. ⋯ We present a novel method to monitor cerebral autoregulation (CA) using the wavelet transform (WT). The new method is validated against the pressure reactivity index (PRx) in two piglet experiments with controlled hypotension. The first experiment (n = 12) had controlled haemorrhage with artificial stationary arterial blood pressure (ABP) and intracranial pressure (ICP) oscillations induced by sinusoidal slow changes in positive end-expiratory pressure ('PEEP group'). The second experiment (n = 17) had venous balloon inflation during spontaneous, non-stationary ABP and ICP oscillations ('non-PEEP group'). The wavelet transform phase shift (WTP) between ABP and ICP was calculated in the frequency range 0.0067-0.05 Hz. Wavelet semblance, the cosine of WTP, was used to make the values comparable to PRx, and the new index was termed wavelet pressure reactivity index (wPRx). The traditional PRx, the running correlation coefficient between ABP and ICP, was calculated. The result showed a significant linear relationship between wPRx and PRx in the PEEP group (R = 0.88) and non-PEEP group (R = 0.56). In the non-PEEP group, wPRx showed better performance than PRx in distinguishing cerebral perfusion pressure (CPP) above and below the lower limit of autoregulation (LLA). When CPP was decreased below LLA, wPRx increased from 0.43 ± 0.28 to 0.69 ± 0.12 (P = 0.003) while PRx increased from 0.07 ± 0.21 to 0.27 ± 0.37 (P = 0.04). Moreover, wPRx provided a more stable result than PRx (SD of PRx was 0.40 ± 0.07, and SD of wPRx was 0.28 ± 0.11, P = 0.001). Assessment of CA using wavelet-derived phase shift between ABP and ICP is feasible.
-
The Journal of physiology · Jul 2018
Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation.
Experimental pain or its anticipation influence motor preparation processes as well as upcoming movement execution, but the underlying physiological mechanisms remain unknown. Our results showed that movement-related pain modulates corticospinal excitability during motor preparation. In accordance with the pain adaptation theory, corticospinal excitability was higher when the muscle has an antagonist (vs. an agonist) role for the upcoming movement associated with pain. Anticipation of movement-related pain also affects motor initiation and execution, with slower movement initiation (longer reaction times) and faster movement execution compared to movements that do not evoke pain. These results confirm the implementation of protective strategies during motor preparation known to be relevant for acute pain, but which may potentially have detrimental long-term consequences and lead to the development of chronic pain. ⋯ When a movement repeatedly generates pain, we anticipate movement-related pain and establish self-protective strategies during motor preparation, but the underlying mechanisms remains poorly understood. The current study investigated the effect of movement-related pain anticipation on the modulation of behaviour and corticospinal excitability during the preparation of arm movements. Participants completed an instructed-delay reaction-time (RT) task consisting of elbow flexions and extensions instructed by visual cues. Nociceptive laser stimulations (unconditioned stimuli) were applied to the lateral epicondyle during movement execution in a specific direction (CS+) but not in the other (CS-), depending on experimental group. During motor preparation, transcranial magnetic stimulation was used to measure corticospinal excitability in the biceps brachii (BB). RT and peak end-point velocity were also measured. Neurophysiological results revealed an opposite modulation of corticospinal excitability in BB depending on whether it plays an agonist (i.e. flexion) or antagonist (i.e. extension) role for the CS+ movements (P < 0.001). Moreover, behavioural results showed that for the CS+ movements RT did not change relative to baseline, whereas the CS- movements were initiated more quickly (P = 0.023) and the CS+ flexion movements were faster relative to the CS- flexion movements (P < 0.001). This is consistent with the pain adaptation theory which proposes that in order to protect the body from further pain, agonist muscle activity is reduced and antagonist muscle activity is increased. If these strategies are initially relevant and lead to short-term pain alleviation, they may potentially have detrimental long-term consequences and lead to the development of chronic pain.
-
The Journal of physiology · May 2018
Supraspinal modulation of neuronal synchronization by nociceptive stimulation induces an enduring reorganization of dorsal horn neuronal connectivity.
The state of central sensitization induced by the intradermic injection of capsaicin leads to structured (non-random) changes in functional connectivity between dorsal horn neuronal populations distributed along the spinal lumbar segments in anaesthetized cats. The capsaicin-induced changes in neuronal connectivity and the concurrent increase in secondary hyperalgesia are transiently reversed by the systemic administration of small doses of lidocaine, a clinically effective procedure to treat neuropathic pain. The effects of both capsaicin and lidocaine are greatly attenuated in spinalized preparations, showing that supraspinal influences play a significant role in the shaping of nociceptive-induced changes in dorsal horn functional neuronal connectivity. We conclude that changes in functional connectivity between segmental populations of dorsal horn neurones induced by capsaicin and lidocaine result from a cooperative adaptive interaction between supraspinal and spinal neuronal networks, a process that may have a relevant role in the pathogenesis of chronic pain and analgesia. ⋯ Despite a profusion of information on the molecular and cellular mechanisms involved in the central sensitization produced by intense nociceptive stimulation, the changes in the patterns of functional connectivity between spinal neurones associated with the development of secondary hyperalgesia and allodynia remain largely unknown. Here we show that the state of central sensitization produced by the intradermal injection of capsaicin is associated with structured transformations in neuronal synchronization that lead to an enduring reorganization of the functional connectivity within a segmentally distributed ensemble of dorsal horn neurones. These changes are transiently reversed by the systemic administration of small doses of lidocaine, a clinically effective procedure to treat neuropathic pain. Lidocaine also reduces the capsaicin-induced facilitation of the spinal responses evoked by weak mechanical stimulation of the skin in the region of secondary but not primary hyperalgesia. The effects of both intradermic capsaicin and systemic lidocaine on the segmental correlation and coherence between ongoing cord dorsum potentials and on the responses evoked by tactile stimulation in the region of secondary hyperalgesia are greatly attenuated in spinalized preparations, showing that supraspinal influences are involved in the reorganization of the nociceptive-induced structured patterns of dorsal horn neuronal connectivity. We conclude that the structured reorganization of the functional connectivity between the dorsal horn neurones induced by capsaicin nociceptive stimulation results from cooperative interactions between supraspinal and spinal networks, a process that may have a relevant role in the shaping of the spinal state in the pathogenesis of chronic pain and analgesia.
-
The Journal of physiology · Apr 2018
Parvalbumin fast-spiking interneurons are selectively altered by paediatric traumatic brain injury.
Traumatic brain injury (TBI) in children remains a leading cause of death and disability and it remains poorly understood why children have worse outcomes and longer recover times. TBI has shown to alter cortical excitability and inhibitory drive onto excitatory neurons, yet few studies have directly examined changes to cortical interneurons. This is addressed in the present study using a clinically relevant model of severe TBI (controlled cortical impact) in interneuron cell type specific Cre-dependent mice. Mice subjected to controlled cortical impact exhibit specific loss of parvalbumin (PV) but not somatostatin immunoreactivity and cell density in the peri-injury zone. PV interneurons are primarily of a fast-spiking (FS) phenotype that persisted in the peri-injury zone but received less frequent inhibitory and stronger excitatory post-synaptic currents. The targeted loss of PV-FS interneurons appears to be distinct from previous reports in adult mice suggesting that TBI-induced pathophysiology is dependent on the age at time of impact. ⋯ Paediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Traditionally, ongoing neurodevelopment and neuroplasticity have been considered to confer children with an advantage following TBI. However, recent findings indicate that the paediatric brain may be more sensitive to brain injury. Inhibitory interneurons are essential for proper cortical function and are implicated in the pathophysiology of TBI, yet few studies have directly investigated TBI-induced changes to interneurons themselves. Accordingly, in the present study, we examine how inhibitory neurons are altered following controlled cortical impact (CCI) in juvenile mice with targeted Cre-dependent fluorescence labelling of interneurons (Vgat:Cre/Ai9 and PV:Cre/Ai6). Although CCI failed to alter the number of excitatory neurons or somatostatin-expressing interneurons in the peri-injury zone, it significantly decreased the density of parvalbumin (PV) immunoreactive cells by 71%. However, PV:Cre/Ai6 mice subjected to CCI showed a lower extent of fluorescence labelled cell loss. PV interneurons are predominantly of a fast-spiking (FS) phenotype and, when recorded electrophysiologically from the peri-injury zone, exhibited intrinsic properties similar to those of control neurons. Synaptically, CCI induced a decrease in inhibitory drive onto FS interneurons combined with an increase in the strength of excitatory events. The results of the present study indicate that CCI induced both a loss of PV interneurons and an even greater loss of PV expression. This suggests caution is required when interpreting changes in PV immunoreactivity alone as direct evidence of interneuronal loss. Furthermore, in contrast to reports in adults, TBI in the paediatric brain selectively alters PV-FS interneurons, primarily resulting in a loss of interneuronal inhibition.