The Journal of physiology
-
The Journal of physiology · Jun 1976
Comparative StudyA comparison of the presynaptic and post-synaptic actions of pentobarbitone and phenobarbitone in the neuromuscular junction of the frog.
1. Pentobarbitone or phenobarbitone, in increasing concentrations up to 0-5 mM, progressively reduced the amplitude of miniature end-plate potentials (min.e.p.p.s). Pentobarbitone was the more potent of the two barbiturates in this regard. 2. ⋯ Therefore, over the range of concentrations examined the enhancement of transmitter release was quantitatively less than the reduction in responsiveness of the post-synaptic membrane. 4. Because of the greater ratio of post-synaptic to presynaptic actions, pentobarbitone was more potent than phenobarbitone in reducing synaptic efficacy (e.p.p. amplitude). 5. It is concluded that the presynaptic actions of pentobarbitone and phenobarbitone contribute significantly to barbiturate-induced changes in synaptic efficacy at low levels of transmitter release in the frog neuromuscular junction.
-
The Journal of physiology · Feb 1975
Interrelationships of the volume and time components of individual breaths in resting man.
1. The volume and time components of individual breaths have been investigated under 'steady-state' conditions during air-breathing in fifteen subjects and, in a further six subjects, also during the addition of 1-5 and 3% CO2 to the inspired gas. 2. A computer-assisted method has been used to derive from the air flow record the individual breath values of tidal volume (VT), inspiratory duration (TI), expiratory duration (TE) and cycle duration (TC = TI + TE) for a sequence of breaths in the various steady-state conditions. 3. ⋯ It is concluded that the previously observed tendency for ventilation to be held constant from breath to breath during steady-state breathing depends predominantly on the tendency for VI to be held constant. Close restraints are evidently not imposed on the individual values of VT and TI under these conditions. The neural mechanism generating breathing appears to control ventilation principally by regulating the rate of inspiratory air flow and secondarily TE.
-
The Journal of physiology · Dec 1974
Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
1. To explore the feasibility of a visual prosthesis for the blind, human visual cortex has been stimulated during a series of surgical procedures on conscious volunteers undergoing other occipital lobe surgery.2. Area no. 17 seems the most effective locus for such stimulation, at least in sighted or recently hemianopic patients.3. ⋯ Multiple phosphenes are co-planar, although patients are unable to estimate their distance.17. Phosphenes appear immediately when stimulation is begun, and disappear immediately upon cessation of stimulation.18. Future work must concentrate on blind volunteers to explore possible differences in subjective sensation produced after prolonged blindness, and to explore more complex pattern presentation which requires substantial periods of time with any given patient.
-
The Journal of physiology · Sep 1974
Circulatory effects of deep inspirations, blocked expirations and positive pressure inflations at equal transpulmonary pressures in conscious dogs.
1. Circulatory effects of deep inspirations, blocked expirations and constant endotracheal positive pressure inflations were studied in six conscious dogs under comparable geometries of the pulmonary vascular bed, i.e. at equal transpulmonary pressures (around 10.2 cm H(2)O) and similar lung volumes.2. In order to characterize these effects, we measured beat-by-beat left and right ventricular ejections, pulmonary arterial, left atrial and aortic mean transmural pressures, and concomitant intrathoracic and tracheal pressures. ⋯ These observations suggest that the decrease in venous return (and consequently in right ventricular output) following the increase in intrathoracic pressure is the leading factor which overshadows the augmentation in left ventricular output associated with the simultaneous decrease in left ventricular outflow impedance.5. Similar experiments performed on two additional dogs in acute conditions showed the same circulatory effects before and after pharmacological blockade. These observations therefore confirm that mechanical factors play a leading part during these respiratory manoeuvres.