The Journal of clinical investigation
-
The ubiquitin proteasome system (UPS) is an essential metabolic constituent of cellular physiology that tightly regulates cellular protein concentrations with specificity and precision to optimize cellular function. Inhibition of the proteasome has proven very effective in the treatment of multiple myeloma, and this approach is being tested for utility in other malignancies. New pharmaceuticals targeting the proteasome itself or specific proximal pathways of the UPS are in development as antiproliferatives or immunomodulatory agents. In this article, we discuss the biology of UPS-targeting drugs, their use as therapy for neoplasia, and the state of clinical and preclinical development for emerging therapeutics.
-
Malaria, which is the result of Plasmodium falciparum infection, is a global health threat that resulted in 655,000 deaths and 216 million clinical cases in 2010 alone. Recent phase 3 trials with malaria vaccine candidate RTS,S/AS01 (RTS,S) in children has demonstrated modest efficacy against clinical and severe malaria. RTS,S targets the pre-erythrocytic phase of the disease and induces high antibody titers against the P. falciparum circumsporozoite protein (CSP) and a moderate CD4(+) T cell response. ⋯ Titers of anti-CSP that conveyed full protection were within the range observed in human RTS,S vaccine recipients. Increasing anti-CSP titers resulted in a dose-dependent reduction of the liver parasite burden. These data indicate that RTS,S-induced antibodies are protective and provide sterilizing immunity against P. falciparum infection when reaching or exceeding a critical plasma concentration.
-
Multicenter Study Comparative Study
CX3CR1-dependent renal macrophage survival promotes Candida control and host survival.
Systemic Candida albicans infection causes high morbidity and mortality and is associated with neutropenia; however, the roles of other innate immune cells in pathogenesis are poorly defined. Here, using a mouse model of systemic candidiasis, we found that resident macrophages accumulated in the kidney, the main target organ of infection, and formed direct contacts with the fungus in vivo mainly within the first few hours after infection. Macrophage accumulation and contact with Candida were both markedly reduced in mice lacking chemokine receptor CX3CR1, which was found almost exclusively on resident macrophages in uninfected kidneys. ⋯ Renal macrophage deficiency in infected Cx3cr1-/- mice was due to reduced macrophage survival, not impaired proliferation, trafficking, or differentiation. In humans, the dysfunctional CX3CR1 allele CX3CR1-M280 was associated with increased risk of systemic candidiasis. Together, these data indicate that CX3CR1-mediated renal resident macrophage survival is a critical innate mechanism of early fungal control that influences host survival in systemic candidiasis.
-
Chronic pain is a major clinical problem, yet the mechanisms underlying the transition from acute to chronic pain remain poorly understood. In mice, reduced expression of GPCR kinase 2 (GRK2) in nociceptors promotes cAMP signaling to the guanine nucleotide exchange factor EPAC1 and prolongs the PGE2-induced increase in pain sensitivity (hyperalgesia). Here we hypothesized that reduction of GRK2 or increased EPAC1 in dorsal root ganglion (DRG) neurons would promote the transition to chronic pain. ⋯ When either GRK2 was increased in vivo by viral-based gene transfer or EPAC1 was decreased in vivo, as was the case for mice heterozygous for Epac1 or mice treated with Epac1 antisense oligodeoxynucleotides, chronic PGE2-induced hyperalgesia development was prevented in the 2 priming models. Using the CFA model of chronic inflammatory pain, we found that increasing GRK2 or decreasing EPAC1 inhibited chronic hyperalgesia. Our data suggest that therapies targeted at balancing nociceptor GRK2 and EPAC1 levels have promise for the prevention and treatment of chronic pain.
-
Angiotensin converting enzyme 2 (ACE2) is a negative regulator of the renin-angiotensin system (RAS), catalyzing the conversion of Angiotensin II to Angiotensin 1-7. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardioprotective peptide. While an antagonistic relationship between the RAS and apelin has been proposed, such functional interplay remains elusive. ⋯ Moreover, apelin, via activation of its receptor, APJ, increased ACE2 promoter activity in vitro and upregulated ACE2 expression in failing hearts in vivo. Apelin treatment also increased cardiac contractility and ACE2 levels in AT1R-deficient mice. These data demonstrate that ACE2 couples the RAS to the apelin system, adding a conceptual framework for the apelin-ACE2-angiotensin 1-7 axis as a therapeutic target for cardiovascular diseases.