The Journal of clinical investigation
-
Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Navs) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Na(v)s remain unknown. ⋯ SNS-Nedd4L(-/-) mice exhibited thermal hypersensitivity and an enhanced second pain phase after formalin injection. Restoration of NEDD4-2 expression in DRG neurons using recombinant adenoassociated virus (rAAV2/6) not only reduced Na(v)1.7 and Na(v)1.8 current amplitudes, but also alleviated SNI-induced mechanical allodynia. These findings demonstrate that NEDD4-2 is a potent posttranslational regulator of Na(v)s and that downregulation of NEDD4-2 leads to the hyperexcitability of DRG neurons and contributes to the genesis of pathological pain.
-
Septic shock is characterized by increased vascular permeability and hypotension despite increased cardiac output. Numerous vasoactive cytokines are upregulated during sepsis, including angiopoietin 2 (ANG2), which increases vascular permeability. Here we report that mice engineered to inducibly overexpress ANG2 in the endothelium developed sepsis-like hemodynamic alterations, including systemic hypotension, increased cardiac output, and dilatory cardiomyopathy. ⋯ To confirm the role of ANG2 in sepsis, we i.p. injected LPS into C57BL/6J mice, which rapidly developed hypotension, acute pericyte loss, and increased vascular permeability. Importantly, ANG2 antibody treatment attenuated LPS-induced hemodynamic alterations and reduced the mortality rate at 36 hours from 95% to 61%. These data indicate that ANG2-mediated microvascular disintegration contributes to septic shock and that inhibition of the ANG2/TIE2 interaction during sepsis is a potential therapeutic target.
-
Autologous hematopoietic stem cell gene therapy is an approach to treating sickle cell disease (SCD) patients that may result in lower morbidity than allogeneic transplantation. We examined the potential of a lentiviral vector (LV) (CCL-βAS3-FB) encoding a human hemoglobin (HBB) gene engineered to impede sickle hemoglobin polymerization (HBBAS3) to transduce human BM CD34+ cells from SCD donors and prevent sickling of red blood cells produced by in vitro differentiation. The CCL-βAS3-FB LV transduced BM CD34+ cells from either healthy or SCD donors at similar levels, based on quantitative PCR and colony-forming unit progenitor analysis. ⋯ Upon deoxygenation, a lower percentage of HBBAS3-transduced red blood cells exhibited sickling compared with mock-transduced cells from sickle donors. Transduced BM CD34+ cells were transplanted into immunodeficient mice, and the human cells recovered after 2-3 months were cultured for erythroid differentiation, which showed levels of HBBAS3 mRNA similar to those seen in the CD34+ cells that were directly differentiated in vitro. These results demonstrate that the CCL-βAS3-FB LV is capable of efficient transfer and consistent expression of an effective anti-sickling β-globin gene in human SCD BM CD34+ progenitor cells, improving physiologic parameters of the resulting red blood cells.
-
We examined the role of microRNAs (miRNAs) in targeting the stromal-derived factor 1α/CXCR4 (SDF-1α/CXCR4) axis to overcome chemoresistance of AML cells. Microarray analysis of OCI-AML3 cells revealed that the miRNA let-7a was downregulated by SDF-1α-mediated CXCR4 activation and increased by CXCR4 inhibition. Overexpression of let-7a in AML cell lines was associated with decreased c-Myc and BCL-XL protein expression and enhanced chemosensitivity, both in vitro and in vivo. ⋯ In primary human AML samples, high CXCR4 expression was associated with low let-7a levels. Xenografts of primary human AML cells engineered to overexpress let-7a exhibited enhanced sensitivity to cytarabine, resulting in greatly extended survival of immunodeficient mice. Based on these data, we propose that CXCR4 induces chemoresistance by downregulating let-7a to promote YY1-mediated transcriptional activation of MYC and BCLXL in AML cells.
-
Biography Historical Article
A conversation with Stephen O'Rahilly. Interviewed by Ushma S. Neill.