The Journal of clinical investigation
-
Biography Historical Article
A mystery unfolds: Franz-Ulrich Hartl and Arthur L. Horwich win the 2011 Albert Lasker Basic Medical Research Award.
-
We live in a time of increased spending, mounting debt, and few remedies for balancing the federal budget that have bipartisan support. Unfortunately, one recent target for decreased allocations of the federal budget is the NIH; the discussion of the awarded grants and the grant funding process has been skewed and altered to present medical research in an unfriendly light, and this can have very damaging repercussions. Politicizing this process could ultimately challenge human health, technology, and economic growth.
-
Mutations in myocilin (MYOC) are the most common genetic cause of primary open angle glaucoma (POAG), but the mechanisms underlying MYOC-associated glaucoma are not fully understood. Here, we report the development of a transgenic mouse model of POAG caused by the Y437H MYOC mutation; the mice are referred to herein as Tg-MYOC(Y437H) mice. Analysis of adult Tg-MYOC(Y437H) mice, which we showed express human MYOC containing the Y437H mutation within relevant eye tissues, revealed that they display glaucoma phenotypes (i.e., elevated intraocular pressure [IOP], retinal ganglion cell death, and axonal degeneration) closely resembling those seen in patients with POAG caused by the Y437H MYOC mutation. ⋯ Furthermore, chronic and persistent ER stress was found to be associated with TM cell death and elevation of IOP in Tg-MYOC(Y437H) mice. Reduction of ER stress with a chemical chaperone, phenylbutyric acid (PBA), prevented glaucoma phenotypes in Tg-MYOC(Y437H) mice by promoting the secretion of mutant myocilin in the aqueous humor and by decreasing intracellular accumulation of myocilin in the ER, thus preventing TM cell death. These results demonstrate that ER stress is linked to the pathogenesis of POAG and may be a target for treatment in human patients.
-
β-Adrenergic receptors (β-ARs) enhance cardiac contractility by increasing cAMP levels and activating PKA. PKA increases Ca²⁺-induced Ca²⁺ release via phosphorylation of L-type Ca²⁺ channels (LTCCs) and ryanodine receptor 2. Multiple cyclic nucleotide phosphodiesterases (PDEs) regulate local cAMP concentration in cardiomyocytes, with PDE4 being predominant for the control of β-AR-dependent cAMP signals. ⋯ Under β-AR stimulation, Ca²⁺ transients, cell contraction, and spontaneous Ca²⁺ release events were increased in Pde4b-/- and Pde4d-/- myocytes compared with those in WT myocytes. In vivo, after intraperitoneal injection of isoprenaline, catheter-mediated burst pacing triggered ventricular tachycardia in Pde4b-/- mice but not in WT mice. These results identify PDE4B in the CaV1.2 complex as a critical regulator of ICa,L during β-AR stimulation and suggest that distinct PDE4 subtypes are important for normal regulation of Ca²⁺-induced Ca²⁺ release in cardiomyocytes.