The Journal of clinical investigation
-
Historical Article
The convalescent sera option for containing COVID-19.
-
Risk for childhood asthma is conferred by alleles within the 17q21 locus affecting ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression. ORMDL3 inhibits sphingolipid de novo synthesis. Although the effects of 17q21 genotypes on sphingolipid synthesis in human asthma remain unclear, both decreased sphingolipid synthesis and ORMDL3 overexpression are linked to airway hyperreactivity. ⋯ Additionally, de novo sphingolipid synthesis was lower in children with asthma compared with controls. These findings connect genetic 17q21 variations that are associated with asthma risk and higher ORMDL3 expression to lower sphingolipid synthesis in humans. Altered sphingolipid synthesis may therefore be a critical factor in asthma pathogenesis and may guide the development of future therapeutics.
-
Comment
At last - linking ORMDL3 polymorphisms, decreased sphingolipid synthesis, and asthma susceptibility.
Asthma is a common chronic respiratory disease that has a heritable component. Polymorphisms in the endoplasmic reticular protein orosomucoid-like protein 3 (ORMDL3), which regulates sphingolipid homeostasis, have been strongly linked with childhood-onset asthma. ⋯ These results demonstrate that genetic variants in ORMDL3 may confer a risk of developing childhood asthma through dysregulation of sphingolipid synthesis. As such, modulation of sphingolipids may represent a promising avenue of therapeutic development for childhood asthma.
-
Historical Article
The 2019 Nobel Prize honors fundamental discoveries in hypoxia response.
-
The interleukin-3 receptor α subunit, CD123, is expressed in many hematologic malignancies including acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN). Tagraxofusp (SL-401) is a CD123-targeted therapy consisting of interleukin-3 fused to a truncated diphtheria toxin payload. Factors influencing response to tagraxofusp other than CD123 expression are largely unknown. ⋯ We also developed a drug-dependent ADP-ribosylation assay in primary cells that correlated with tagraxofusp activity and may represent an additional novel biomarker. As predicted by these results and our observation that resistance also increased mitochondrial apoptotic priming, we found that the combination of tagraxofusp and azacitidine was effective in patient-derived xenografts treated in vivo. These data have important implications for clinical use of tagraxofusp and led to a phase 1 study combining tagraxofusp and azacitidine in myeloid malignancies.