The Journal of clinical investigation
-
The administration of l-dopa suppresses prolactin (PRL) secretion in normal subjects and in patients with hyperprolactinemia, although it is not known whether this effect, which requires the conversion of dopa to dopamine, is mediated peripherally or through the central nervous system. To distinguish between these effects, 10 normal subjects (6 male, 4 female) and 8 patients with hyperprolactinemia associated with pituitary tumors were given l-dopa, 0.5 g alone, or 0.1 g after a 24-h pretreatment with carbidopa, 50 mg every 6 h, which produces peripheral dopa decarboxylase inhibition. Similar degrees of PRL suppression were observed in normal subjects (basal plasma PRL 13+/-2 ng/ml) after l-dopa alone (48+/-4%) and after l-dopa plus carbidopa (58+/-6%). ⋯ Comparable suppression of PRL levels in response to a dopamine infusion (4 mug/kg per min for 3 h) was observed in controls and tumor patients. The results indicate that although peripheral conversion of exogenous dopa to dopamine can suppress PRL secretion, in normals, the central nervous system conversion of dopa to dopamine in the presence of peripheral dopa decarboxylase inhibition is sufficient to account for its PRL-suppressive effects. In contrast, patients with tumors, while retaining peripheral dopaminergic inhibitory effects on PRL secretion, exhibit a marked reduction of central dopaminergic inhibition of PRL secretion.
-
The effects of hypotensive hemorrhage (HH) on renal hemodynamics and plasma renin activity (PRA) during prostaglandin (PG) synthesis inhibition were examined in three groups of dogs. In each group of animals arterial blood pressure was lowered by a 30% decrement. In the first group of eight control animals, HH was not associated with a significant change in glomerular filtration rate (GFR, 42-36 ml/min, NS); renal blood flow (RBF) declined significantly, from 234 to 171 ml/min, P < 0.05. ⋯ In summary, the present results indicate that renal PG significantly attenuate the effect of HH to decrease GFR and RBF. Furthermore, renal denervation exerts a protective effect against the enhanced renal ischemic effects which occur in the presence of PG inhibition during HH. Finally, PG inhibition does not alter the effect of HH to cause an increase in PRA.
-
To examine the role of basal insulin and glucagon secretion in potassium and sodium homeostasis, somatostatin, a potent inhibitor of insulin and glucagon secretion, was infused for 5 h into healthy human subjects, maturity-onset diabetes, juvenile-onset diabetics, and normal dogs. Infusion of somatostatin resulted in an increase in serum potassium (0.5-0.6 meq/liter) in normal subjects and maturity-onset diabetics, but not in juvenile-onset diabetics despite equivalent reductions in plasma glucagon in all three groups. A similar rise in serum potassium was observed in normal conscious dogs given somatostatin and was reversed by insulin replacement. ⋯ However, urinary sodium excretion displayed a biphasic response falling by 20-60% within the first 2 h of somatostatin administration and then rising to values 50-80% above basal levels at 3-4 h. Inulin and p-aminohippurate clearances were unaffected by somatostatin. It is concluded that (a) potassium homeostasis is influenced by basal insulin levels in the absence of which serum potassium concentration rises and potassium tolerance declines; (b) this effect of insulin is mediated via extrarenal mechanisms of potassium disposal; (c) somatostatin has a biphasic effect on urinary sodium secretion, the mechanism of which remains to be established.
-
It has generally been thought that homeostatic mechanisms of renal origin are responsible for minimizing the alkalemia produced by chronic hypocapnia. Recent observations from this laboratory have demonstrated, however, that the decrement in [HCO(-) (3)], which "protects" extracellular pH in normal dogs, is simply the by-product of a nonspecific effect of Paco(2) on renal hydrogen ion secretion; chronic primary hypocapnia produces virtually the same decrement in plasma [HCO(-) (3)] in dogs with chronic HCl acidosis as in normal dogs (Delta[HCO(-) (3)]/DeltaPaco(2) = 0.5), with the result that plasma [H(+)] in animals with severe acidosis rises rather than falls during superimposed forced hyperventilation. This observation raised the possibility that the secondary hypocapnia which normally accompanies metabolic acidosis, if persistent, might induce an analogous renal response and thereby contribute to the steady-state decrement in plasma [HCO(-) (3)] observed during HCl feeding. ⋯ These data indicate that the decrement in plasma [HCO(-) (3)] seen in chronic HCl acidosis is a composite function of (a) the acid load itself and (b) the renal response to the associated hyperventilation. We conclude that this renal response is maladaptive because it clearly diminishes the degree to which plasma acidity is protected by secondary hypocapnia acutely. Moreover, under some circumstances, this maladaptation actually results in more severe acidemia than would occur in the complete absence of secondary hypocapnia.
-
In normal plasma, the ratio of the procoagulant activity of factor VIII (VIII(AHF)) to that of the von Willebrand factor activity (ristocetin cofactor, VIII(VWF)) or factor VIII antigen (VIII(AGN)) is approximately 1, but ratios > 1 (e.g., VIII(AHF) > VIII(VWF) or VIII(AGN)) may be observed in some patients with von Willebrand's disease and in the "late" posttransfusion plasmas of patients with this disorder. The lability of VIII(AHF) was studied by incubating plasma, diluted 1:10 in imidazole buffer pH 7.1, for 6 h at 37 degrees C. With normal plasmas, 77+/-12% (SD) of the original VIII(AHF) activity remained after incubation. ⋯ The electrophoretic mobility of factor VIII antigen was increased in two of the three patients with labile VIII(AHF). In both of these patients, and in the late posttransfusion plasmas, labile VIII(AHF) activity could be stabilized by the addition of purified von Willebrand factor (lacking VIII(AHF) activity) or by hemophilic plasma, but not by plasmas of patients with severe von Willebrand's disease. Thus, VIII(VWF) may serve to stabilize VIII(AHF) and this might explain the posttransfusion findings in von Willebrand's disease.