Neurosurgery
-
Severely head-injured patients have traditionally been maintained in the head-up position to ameliorate the effects of increased intracranial pressure (ICP). However, it has been reported that the supine position may improve cerebral perfusion pressure (CPP) and outcome. We sought to determine the impact of supine and 30 degrees semirecumbent postures on cerebrovascular dynamics and global as well as regional cerebral oxygenation within 24 hours of trauma. ⋯ Routine nursing of patients with severe head injury at 30 degrees of head elevation within 24 hours after trauma leads to a consistent reduction of ICP (statistically significant) and an improvement in CPP (although not statistically significant) without concomitant deleterious changes in cerebral oxygenation.
-
Large provider caseloads are associated with better patient outcomes after many complex surgical procedures. Mortality rates for pediatric brain tumor surgery in various practice settings have not been described. We used a national hospital discharge database to study the volume-outcome relationship for craniotomy performed for pediatric brain tumor resection, as well as trends toward centralization and specialization. ⋯ Mortality and adverse discharge disposition rates for pediatric brain tumor craniotomy were lower when the procedure was performed at high-volume hospitals and by high-volume surgeons in the United States, from 1988 to 2000. There were trends toward lower mortality rates, greater centralization of surgery, and more specialization among surgeons during this period.
-
The purpose of this article is to update the neurosurgical community on the expanding field of surgical robotics and to present the design of a novel neurosurgical prototype. It is intended to mimic standard technique and deploy conventional microsurgical tools. The intention is to ease its integration into the "nervous system" of both the traditional operating room and surgeon. ⋯ Breadboard testing of the prototype components has shown spatial resolution of 30 microm, greatly exceeding our expectations. Neurosurgeons will not only be able to perform current procedures with a higher margin of safety but also must speculate on techniques that have hitherto not even been contemplated. This includes coupling the robot to intelligent tools that interrogate tissue before its manipulation and the potential of molecular imaging to transform neurosurgical research into surgical exploration of the cell, not the organ.