Neuroscience and biobehavioral reviews
-
Neurosci Biobehav Rev · Jan 2018
ReviewGlymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy.
Traumatic brain injury (TBI) is an increasingly important issue among veterans, athletes and the general public. Difficulties with sleep onset and maintenance are among the most commonly reported symptoms following injury, and sleep debt is associated with increased accumulation of beta amyloid (Aβ) and phosphorylated tau (p-tau) in the interstitial space. Recent research into the glymphatic system, a lymphatic-like metabolic clearance mechanism in the central nervous system (CNS) which relies on cerebrospinal fluid (CSF), interstitial fluid (ISF), and astrocytic processes, shows that clearance is potentiated during sleep. ⋯ Long-term consequences of chronic dysfunction within this system in the context of repetitive brain trauma and insomnia have not been established, but potentially provide one link in the explanatory chain connecting repetitive TBI with later neurodegeneration. Current research has shown p-tau deposition in perivascular spaces and along interstitial pathways in chronic traumatic encephalopathy (CTE), pathways related to glymphatic flow; these are the main channels by which metabolic waste is cleared. This review addresses possible links between mTBI-related damage to glymphatic functioning and physiological changes found in CTE, and proposes a model for the mediating role of sleep disruption in increasing the risk for developing CTE-related pathology and subsequent clinical symptoms following repetitive brain trauma.
-
Neurosci Biobehav Rev · Sep 2017
Review Meta AnalysisThe impact of machine learning techniques in the study of bipolar disorder: A systematic review.
Machine learning techniques provide new methods to predict diagnosis and clinical outcomes at an individual level. We aim to review the existing literature on the use of machine learning techniques in the assessment of subjects with bipolar disorder. We systematically searched PubMed, Embase and Web of Science for articles published in any language up to January 2017. ⋯ Most of the included studies used multiple levels of biological data to distinguish the diagnosis of bipolar disorder from other psychiatric disorders or healthy controls. We also found studies that assessed the prediction of clinical outcomes and studies using unsupervised machine learning to build more consistent clinical phenotypes of bipolar disorder. We concluded that given the clinical heterogeneity of samples of patients with BD, machine learning techniques may provide clinicians and researchers with important insights in fields such as diagnosis, personalized treatment and prognosis orientation.
-
Neurosci Biobehav Rev · May 2017
ReviewThe endocannabinoid system as a target for novel anxiolytic drugs.
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. ⋯ Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
-
Neurosci Biobehav Rev · May 2017
ReviewOxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience.
Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. ⋯ In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts.
-
Neurosci Biobehav Rev · Jan 2017
Review Meta AnalysisAberrant regional homogeneity in Parkinson's disease: A voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies.
Studies of abnormal regional homogeneity (ReHo) in Parkinson's disease (PD) have reported inconsistent results. Therefore, we conducted a meta-analysis using the Seed-based d Mapping software package to identify the most consistent and replicable findings. ⋯ Increased ReHo was consistently identified in the bilateral inferior parietal lobules, bilateral medial prefrontal cortices, and left cerebellum of patients with PD when compared to healthy controls, while decreased ReHo was observed in the right putamen, right precentral gyrus, and left lingual gyrus. The results of the current meta-analysis demonstrate a consistent and coexistent pattern of impairment and compensation of intrinsic brain activity that predominantly involves the default mode and motor networks, which may advance our understanding of the pathophysiological mechanisms underlying PD.