Neuroscience and biobehavioral reviews
-
Neurosci Biobehav Rev · Sep 2015
Review Meta AnalysisPost-traumatic stress influences the brain even in the absence of symptoms: A systematic, quantitative meta-analysis of neuroimaging studies.
Stress affects brain function, and may lead to post-traumatic stress disorder (PTSD). Considerable empirical data for the neurobiology of PTSD has been derived from neuroimaging studies, although findings have proven inconsistent. We used an activation likelihood estimation analysis to explore differences in brain activity between adults with and without PTSD in response to affective stimuli. ⋯ Changes in activity in the amygdala and parahippocampal cortex distinguished PTSD from both control groups. Results suggest that trauma has a measurable, enduring effect upon the functional dynamics of the brain, even in individuals who experience trauma but do not develop PTSD. These findings contribute to the understanding of whole-brain network activity following trauma, and its transition to clinical PTSD.
-
Chronic traumatic encephalopathy (CTE) has been described in the literature as a neurodegenerative disease with: (i) localized neuronal and glial accumulations of phosphorylated tau (p-tau) involving perivascular areas of the cerebral cortex, sulcal depths, and with a preference for neurons within superficial cortical laminae; (ii) multifocal axonal varicosities and axonal loss involving deep cortex and subcortical white matter; (iii) relative absence of beta-amyloid deposits; (iv) TDP-43 immunoreactive inclusions and neurites; and (v) broad and diverse clinical features. Some of the pathological findings reported in the literature may be encountered with age and other neurodegenerative diseases. ⋯ It has not been established that the described tau pathology, especially in small amounts, can cause complex changes in behavior such as depression, substance abuse, suicidality, personality changes, or cognitive impairment. Future studies will help determine the extent to which the neuropathology is causally related to the diverse clinical features.
-
In the past decade, there has been renewed interest in immune/inflammatory changes and their associated oxidative/nitrosative consequences as key pathophysiological mechanisms in schizophrenia and related disorders. Both brain cell components (microglia, astrocytes, and neurons) and peripheral immune cells have been implicated in inflammation and the resulting oxidative/nitrosative stress (O&NS) in schizophrenia. Furthermore, down-regulation of endogenous antioxidant and anti-inflammatory mechanisms has been identified in biological samples from patients, although the degree and progression of the inflammatory process and the nature of its self-regulatory mechanisms vary from early onset to full-blown disease. This review focuses on the interactions between inflammation and O&NS, their damaging consequences for brain cells in schizophrenia, the possible origins of inflammation and increased O&NS in the disorder, and current pharmacological strategies to deal with these processes (mainly treatments with anti-inflammatory or antioxidant drugs as add-ons to antipsychotics).
-
Neurosci Biobehav Rev · Aug 2015
Review Meta AnalysisBDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neurogenesis and synaptic plasticity in the central nervous system, especially in the hippocampus, and has been implicated in the pathophysiology of several neuropsychiatric disorders. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a functionally relevant single nucleotide polymorphism affecting the secretion of BDNF and is implicated in differences in hippocampal volumes. ⋯ This meta-analysis suggests that there is no association between this BDNF polymorphism and hippocampal volumes. For each BDNF genotype, the hippocampal volumes were significantly lower in neuropsychiatric patients than in healthy controls.
-
Neurosci Biobehav Rev · Aug 2015
ReviewOxytocin and the modulation of pain experience: Implications for chronic pain management.
In an acute environment pain has potential protective benefits. However when pain becomes chronic this protective effect is lost and the pain becomes an encumbrance. Previously unheralded substances are being investigated in an attempt to alleviate the burden of living with chronic pain. ⋯ In this review, we discuss previous effective applications of oxytocin in pain-free clinical populations and its potential use in the modulation of pain experience. We also address the slowly growing body of literature investigating the administration of oxytocin in clinical and experimentally induced pain in order to investigate the potential mechanisms of its reported analgesic actions. We conclude that oxytocin offers a potential novel avenue for modulating the experience of pain, and that further research into this area is required to map its therapeutic benefit.