Sleep
-
There are few studies on gene-environment interactions with obstructive sleep apnea (OSA). Our study aimed to explore genetic polymorphisms associated with OSA using genome-wide association (GWA) data and evaluate the effects of relevant polymorphisms on the association between risk factors, including obesity and alcohol consumption, and OSA. We also investigated on these associations in relation to cerebral white matter hyperintensities (WMH) on magnetic resonance images. ⋯ These findings suggest that the neuregulin-1 gene (NRG1) may be involved in the etiological mechanisms of obstructive sleep apnea (OSA) and that carriers of a particular NRG1 mutation may be less likely to have OSA if they do not drink alcoholic beverages.
-
When sounds associated with learning are presented again during slow-wave sleep, targeted memory reactivation (TMR) can produce improvements in subsequent location recall. Here we used TMR to investigate memory consolidation during an afternoon nap as a function of prior learning. ⋯ These findings substantiate the use of targeted memory reactivation (TMR) methods for manipulating consolidation during sleep. TMR can selectively strengthen memory storage for object-location associations learned prior to sleep, except for those near-perfectly memorized. Neural measures found in conjunction with TMR-induced strengthening provide additional evidence about mechanisms of sleep consolidation.
-
Prevalence of cardiovascular disease (CVD) is increased in patients with obstructive sleep apnea (OSA), possibly related to dyslipidemia in these individuals. Insulin resistance is also common in OSA, but its contribution to dyslipidemia of OSA is unclear. The study's aim was to define the relationships among abnormalities of lipoprotein metabolism, clinical measures of OSA, and insulin resistance. ⋯ Pro-atherogenic lipoprotein abnormalities in obstructive sleep apnea (OSA) are related to insulin resistance, but not to OSA severity or degree of hypoxia. Insulin resistance may represent the link between OSA-related dyslipidemia and increased cardiovascular disease risk.
-
Upper airway stimulation (UAS) is a new approach to treat moderate-to-severe obstructive sleep apnea. Recently, 12-month data from the Stimulation Treatment for Apnea Reduction (STAR) trial were reported, evaluating the effectiveness of UAS in patients intolerant or non-adherent to continuous positive airway pressure therapy. Our objective was to assess the cost-effectiveness of UAS from a U.S. payer perspective. ⋯ Relative to the acknowledged willingness-to-pay threshold of $50,000-$100,000/QALY, our results indicate upper airway stimulation is a cost-effective therapy in the U.S. healthcare system.