Developmental neuroscience
-
Physical abuse associated with nonaccidental trauma (NAT) affects approximately 144,000 children per year in the USA and, frequently, these injuries affect the developing brain. Most infants with suspected NAT are initially evaluated by skull X-rays and computed tomography to determine whether fractures are present, the severity of the acute injury and the need for urgent neurosurgical intervention. Increasingly, magnetic resonance imaging (MRI) is conducted as it provides additional diagnostic and prognostic information about the extent and nature of the injury. ⋯ Diffusion tensor imaging is a form of DWI and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in the human brain. It has been shown to be useful in identifying white matter abnormalities after DAI when conventional imaging appears normal. Although these imaging methods have been studied primarily in adults and children with accidental traumatic brain injury, it is clear that they have the potential to provide additional value in the imaging and clinical evaluation of children with NAT.
-
Atrophy of the corpus callosum (CC) is a documented consequence of moderate-to-severe traumatic brain injury (TBI), which has been expressed as volume loss using quantitative magnetic resonance imaging (MRI). Other advanced imaging modalities such as diffusion tensor imaging (DTI) have also detected white matter microstructural alteration following TBI in the CC. The manner and degree to which macrostructural changes such as volume and microstructural changes develop over time following pediatric TBI, and their relation to a measure of processing speed is the focus of this longitudinal investigation. As such, DTI and volumetric changes in the CC in participants with TBI and a comparison group at approximately 3 and 18 months after injury as well as their relation to processing speed were determined. ⋯ In response to TBI, macrostructural volume loss in the CC occurred over time; yet, at the microstructural level, DTI demonstrated both indicators of continued maturation and development even in the damaged CC, as well as evidence of potential degenerative change. Unlike volumetrics, which likely reflects the degree of overall neuronal loss and axonal damage, DTI may reflect some aspects of postinjury maturation and adaptation in white matter following TBI. Multimodality imaging studies may be important to further understand the long-term consequences of pediatric TBI.
-
α-Synuclein is one of the most abundant proteins in presynaptic terminals. Normal expression of α-synuclein is essential for neuronal survival and it prevents the initiation of apoptosis in neurons through covalent cross-linking of cytochrome c released from mitochondria. Exocytosis of α-synuclein occurs with neuronal mitochondrial dysfunction, making its detection in cerebrospinal fluid (CSF) of children after severe traumatic brain injury (TBI) a potentially important marker of injury. ⋯ CSF α-synuclein levels were elevated in TBI patients compared to controls (p = 0.0093), with a temporal profile showing an early, approximately 5-fold increase on days 1-3 followed by a delayed, >10-fold increase on days 4-6 versus control. α-Synuclein levels were higher in patients treated with normothermia versus hypothermia (p = 0.0033), in patients aged <4 years versus ≥4 years (p < 0.0001), in females versus males (p = 0.0007), in nonaccidental TBI versus accidental TBI victims (p = 0.0003), and in patients with global versus focal injury on computed tomography of the brain (p = 0.046). Comparisons of CSF α-synuclein levels with initial GCS and GOS scores were not statistically significant. Further studies are needed to evaluate the conformational status of α-synuclein in CSF, and whether TH affects α-synuclein aggregation.
-
Vasopressors are commonly used to increase mean arterial blood pressure (MAP) and cerebral perfusion pressure (CPP) after traumatic brain injury (TBI), but there are few data comparing vasopressor effectiveness after pediatric TBI. ⋯ Vasopressor use varied by age. While there was no statistically significant difference in MAP or CPP between vasopressor groups, norepinephrine was associated with a clinically relevant higher CPP and lower intracranial pressure at 3 h after start of vasopressor therapy compared to the other vasopressors examined.
-
Traumatic brain injury (TBI) and hypoxic ischemic encephalopathy (HIE) are leading causes of morbidity and mortality in children. Several studies over the past several years have evaluated the use of serum biomarkers to predict outcome after pediatric brain injury. These studies have all used simple point estimates such as initial and peak biomarker concentrations to predict outcome. ⋯ Thus, when the models predicted a poor outcome, there was a very high probability of a poor outcome. In contrast, 17% of subjects with a poor outcome were predicted to have a good outcome by all 3 biomarker trajectories. These data suggest that trajectory analysis of biomarker data may provide a useful approach for predicting outcome after pediatric brain injury.