Journal of neuroscience methods
-
J. Neurosci. Methods · Sep 2012
Evaluation of transcranial Doppler flow velocity changes in intracerebral hemorrhage rats using ultrasonography.
This study investigated the blood flow velocity changes in seven major arteries in rat brain before and after intracerebral hemorrhage (ICH) using high frequency transcranial Doppler (TCD) ultrasonography (13-4 MHz). Eighteen adult Sprague Dawley rats received either the collagenase-injection surgery (ICH, n=12) or the saline-injection surgery (control, n=6) after baseline TCD flow velocity values were recorded. The TCD flow velocity changes were measured at 0.5h after the surgery and daily for the following 8 days in seven major cerebral arteries, including bilateral internal carotid arteries, bilateral middle cerebral arteries (MCAs), bilateral posterior cerebral arteries (PCAs), and basilar artery. ⋯ This study demonstrates the feasibility and reliability of monitoring TCD flow velocity in cerebral arteries using ultrasonography technique in a rat ICH model. The results of this study extend our knowledge in the cerebrovascular changes during intracranial hemorrhage and suggest a possibility of clinical application of TCD ultrasonography in studying the dynamic cerebral circulation after strokes. Moreover, this method could be extensively applied in further studies using potential neuroprotective treatments that affect the cerebral dynamics in the intracerebral hemorrhage.
-
J. Neurosci. Methods · Sep 2012
Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei.
Recent advances in optogenetic methods demonstrate the feasibility of selective photoactivation at the soma of neurons that express channelrhodopsin-2 (ChR2), but a comprehensive evaluation of different methods to selectively evoke transmitter release from distant synapses using optogenetic approaches is needed. Here we compared different lentiviral vectors, with sub-population-specific and strong promoters, and transgenic methods to express and photostimulate ChR2 in the long-range projections of paraventricular nucleus of the hypothalamus (PVN) neurons to brain stem cardiac vagal neurons (CVNs). Using PVN subpopulation-specific promoters for vasopressin and oxytocin, we were able to depolarize the soma of these neurons upon photostimulation, but these promoters were not strong enough to drive sufficient expression for optogenetic stimulation and synaptic release from the distal axons. ⋯ However, neither was able to drive sufficient expression to observe and photostimulate the long-range projections to brainstem autonomic regions. We conclude that a viral vector approach with a strong promoter is required for successful optogenetic stimulation of distal axons to evoke transmitter release in pre-autonomic PVN neurons. This approach can be very useful to study important hypothalamus-brainstem connections, and can be easily modified to selectively activate other long-range projections within the brain.
-
J. Neurosci. Methods · Aug 2012
A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control.
We introduce a new type of BCI for continuous simultaneous two dimensional cursor control. Users tried to control the vertical position of a virtual ball via ERD activity associated with imagined movement while simultaneously controlling horizontal position with SSVEP activity resulting from visual attention. Ten subjects participated in one offline and six online control sessions. ⋯ Two subjects attained very good performance, while the remaining subjects did not. Training did not affect subjective or objective measures. Overall, results show that this new hybrid approach is viable for some users, and that substantial further research is needed to identify and optimize the best BCIs for each user.
-
J. Neurosci. Methods · Aug 2012
A fluorescent-based assay for live cell, spatially resolved assessment of vesicular monoamine transporter 2-mediated neurotransmitter transport.
The vesicular monoamine transporter 2 (VMAT2; Slc18a2) packages monoamines into synaptic vesicles. Monoamine homeostasis is highly regulated and dysfunction may play a role in Parkinson's disease, Huntington's disease, drug addiction, and neuropsychiatric disorders. The primary function of VMAT2 is to sequester monoamine neurotransmitters into vesicles for subsequent release; it also sequesters toxicants away from cytosolic sites of action. ⋯ Furthermore, the VMAT2-specific inhibitor tetrabenazine (TBZ) blocks uptake into the mCherry-positive compartment. Confocal images can be analyzed to generate a measure of VMAT2 activity. In summary, we demonstrate a method for spatially resolved analysis of VMAT2-mediated uptake in live intact cells.
-
J. Neurosci. Methods · Jul 2012
Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury.
Penetrating brain injury (PBI) is a complex central nervous system injury in which mechanical damage to brain parenchyma results in hemorrhage, ischemia, broad areas of necrosis, and eventually cavitation. The permanent loss of brain tissue affords the possibility of treatment using a biomaterial scaffold to fill the lesion site and potentially deliver pharmacological or cellular therapeutic agents. The administration of cellular therapy may be of benefit in both mitigating the secondary injury process and promoting regeneration through replacement of certain cell populations. ⋯ Implanted neural progenitors were found to have survived within the scaffold, and also to have migrated into the surrounding brain. Differentiated phenotypes included astrocytes, oligodendrocytes, vascular endothelial cells, and possibly macrophages. The demonstrated multipotency of this cell population in vivo in the context of traumatic brain injury has implications for regenerative therapies, but additional stimulation appears necessary to promote neuronal differentiation outside normally neurogenic regions.