Neurotoxicology
-
A major challenge for physicians is to identify patients with acute carbon monoxide (CO) poisoning who are likely to develop delayed neuropsychiatric sequelae (DNS). DNS is defined as neuropsychological sequelae that develops after 2-40 days of lucid interval after CO intoxication. Currently, there is no consensus on factors that predict the prognosis of CO poisoning. Thus, the purpose of this study was to identify factors predicting the development of DNS using a Cox regression model. ⋯ In acute CO poisoning, an initial GCS score ≤ 9 and serum CK level > 175.5 U/L are significant predictors of DNS development.
-
General anesthesia induces changes in dendritic spine number and synaptic transmission in developing mice. These changes are rather disturbing, as similar changes are seen in animal models of neurodevelopmental disorders. We previously suggested that mTor-dependent upregulation of mitochondrial function may be involved in such changes. ⋯ We next assessed whether the mitochondrial unfolded protein response (UPRmt) acted as a link between anesthetic exposure and mitochondrial function. Expression of UPRmt proteins, which help maintain protein-folding homeostasis and increase mitochondrial function, was increased 6 h after sevoflurane exposure. Our results show that a single, brief sevoflurane exposure induces age-dependent changes in mitochondrial function that constitute an important mechanism for the increase in excitatory synaptic transmission in late postnatal mice, and also suggest mitochondria and UPRmt as potential targets for preventing anesthesia toxicity.
-
Autism spectrum disorder (ASD) comprises a broad range of neurodevelopmental disorders that are associated with deficits in social interaction and communication. The tyrosine kinase inhibitor tyrphostin AG126 represents a promising therapeutic agent for several neuroinflammatory disorders. There are currently no treatments available that can improve ASD and we previously showed that AG126 treatment exerts beneficial effects on BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism that shows the core features of ASD; however, the immunological mechanisms and molecular targets associated with this effect were previously unclear. ⋯ We found that BTBR mice treated with AG126 exhibited significant decreases in IL-21R-, IL-21-, IL-22-, TNF-α-, NOS2-, STAT3-producing, and increases in IL-27- and Foxp3-producing, CD8+ T cells. Our results further demonstrated that AG126 treatment effectively decreased IL-21, IL-22, IL-1β, TNF-α, NOS2, JAK1, and STAT3, and increased IL-27 and Foxp3 mRNA and protein expression in brain tissues. Our findings suggest that AG126 elicits a neuroprotective response through downregulation of the IL-21/IL-21R and JAK/STAT pathway in BTBR mice, which could represent a promising novel therapeutic target for ASD treatment.
-
Occupational studies have shown an association between elevated Mn exposure and depressive symptoms. Blood Mn (BMn) naturally rises during pregnancy due to mobilization from tissues, suggesting it could contribute to pregnancy and postpartum depressive symptoms. ⋯ Our results demonstrate that elevated BMn levels during pregnancy predict PPD symptoms and could be a potential pathway for intervention and prevention of PPD.
-
The compositions of the gut microbiota and its metabolites were altered in individuals with Autism Spectrum Disorder (ASD). The aim of this study was to assess whether plasma levels of gut-derived metabolite trimethylamine N-oxide (TMAO) were associated with ASD and the degree of symptom severity. ⋯ Elevated plasma levels of TMAO were associated with ASD and symptom severity.