Pharmacology & therapeutics
-
Following stroke or traumatic damage, neuronal death via both necrosis and apoptosis causes loss of functions including memory, sensory perception and motor skills. Since necrosis has the nature to expand, while apoptosis stops the cell death cascade in the brain, necrosis is considered to be a promising target for rapid treatment for stroke. Pure neuronal necrosis occurs when cortical neurons are cultured under serum-free and low-density conditions. ⋯ Although ProTalpha also causes a cell death mode switch from necrosis to apoptosis in vivo, the induced apoptosis was found to be completely inhibited by endogenously occurring brain-derived neurotrophic factor or erythropoietin. Since forced downregulation of ProTalpha deteriorates the ischemic damage, it is evident that ProTalpha plays in vivo neuroprotective roles after ischemic events. Analyses in terms of the therapeutic time window and potency suggest that ProTalpha could be the prototypic compound to develop the medicine useful for treatment of stroke in clinics.
-
Injury to peripheral or spinal nerves following either trauma or disease has several consequences including the development of neuropathic pain. This syndrome is often refractory against conventional analgesics; and thus, novel medicaments are desired for its treatment. Recent studies have emphasized that dysfunction of inhibitory neuronal regulation of pain signal transduction may be relevant to the development of neuropathic pain. ⋯ Their anti-allodynia effects are mediated by the inhibition of GlyTs following activation of spinal glycine receptor alpha3. These results established GlyTs as target molecules for medicaments for neuropathic pain. Moreover, the phase-dependent anti-allodynia effects of GlyT inhibitors have provided important information on effective therapeutic strategies and also understanding the underlying molecular mechanisms of the development of neuropathic pain.
-
The most important primary headaches (i.e. independent disorders that are not caused by another disease) are migraine, tension-type headache and cluster headache. All primary headaches are in need of better treatments. Migraine has a prevalence of 10% in the general population and its societal costs are high. ⋯ Also ion channels, particularly the K(ATP) channels, are important for the action of NO. In conclusion, inhibition of NO production or blockade of steps in the NO-cGMP pathway or scavenging of NO may be targets for new drugs for treating migraine and other headaches. Indeed, selective n-NOS and i-NOS inhibitors are already in early clinical development.
-
The increasing global prevalence of obesity unequivocally demonstrates that neither behavioural (diet and exercise) nor pharmacological approaches to this health problem are working. In this area of high unmet clinical need, the 5-HT6 receptor has generated enormous interest amongst academic and pharmaceutical industry scientists as a molecular target for the development of a new generation of safe and more effective anti-obesity drugs. ⋯ In animal models, 5-HT6 receptor ligands of all functional types have been shown to decrease food intake when given acutely and chronically, to evoke profound and sustained weight-loss in obese animals, and concomitantly to improve a number of cardio-metabolic risk factors. Comparator studies in obese animal models, which are highly predictive of clinical outcomes, indicate that 5-HT6 ligands may have the potential to be more efficacious in the treatment of obesity than the current generation of anti-obesity drugs.
-
Neuroactive steroids have some of their most potent actions by augmenting the function of GABA(A) receptors. Endogenous steroid actions on GABA(A) receptors may underlie important effects on mood and behavior. Exogenous neuroactive steroids have potential as anesthetics, anticonvulsants, and neuroprotectants. ⋯ We have developed many novel steroid analogues in this effort. Recent work has resulted in synthesis of new enantiomer analogue pairs, novel ligands that probe various properties of the steroid pharmacophore, fluorescent neuroactive steroid analogues, and photoaffinity labels. Using these tools, combined with receptor binding and electrophysiological assays, we have begun to untangle the complexity of steroid actions at this important class of ligand-gated ion channel.