Pharmacology & therapeutics
-
Adrenaline (epinephrine) has been used for cardiopulmonary resuscitation (CPR) since 1896. The rationale behind its use is thought to be its alpha-adrenoceptor-mediated peripheral vasoconstriction, causing residual blood flow to be diverted to coronary and cerebral circulations. This protects these tissues from ischaemic damage and increases the likelihood of restoration of spontaneous circulation. ⋯ Adrenaline has deleterious effects in the setting of resuscitation, predictable from its promiscuous pharmacological profile. This article discusses the relevant pharmacology of adrenaline in the context of CPR. Experimental and clinical evidences for the use of adrenaline and alternative vasopressor agents in resuscitation are given, and the properties of an ideal vasopressor are discussed.
-
Depression and anxiety represent a major problem. However, the current treatment of both groups of diseases is not satisfactory. As the glutamatergic system may play an important role in pathophysiology of both depression and anxiety, we decided to discuss the recent data on possible anxiolytic and/or antidepressant effects of metabotropic glutamate (mGlu) receptor ligands. ⋯ On the other hand, data has been accumulated, indicating that antagonists of group II mGlu receptors have an antidepressant potential. Group III mGlu receptor ligands represent the least investigated group of mGlu receptors. However, preclinical data also indicates that ligands of these receptors, both agonists and antagonists, may have an anxiolytic-like and antidepressant-like potential.
-
Classic inotropic agents provide short-term haemodynamic improvement in patients with heart failure, but their use has been associated with poor prognosis. A new category of inotropic agents, the Ca(2+) sensitizers, may provide an alternative longer lasting solution. Levosimendan is a relatively new Ca(2+) sensitizer which offers haemodynamic and symptomatic improvement by combining a positive inotropic action via Ca(2+) sensitization and a vasodilatory effect via adenosine triphosphate(ATP)-sensitive K(+) (K(ATP)), Ca(2+)-activated K(+) (K(Ca)(2+)) and voltage-dependent K(+) (K(V)) channels activation. ⋯ In conclusion, levosimendan is a promising agent for the treatment of decompensated heart failure. As further to its positive inotropic effect, it affects multiple pathways with key roles in the pathophysiology of heart failure. The results of the ongoing trials examining the effect of levosimendan on mortality in patients with heart failure will hopefully resolve the controversy as to whether levosimendan is superior to classic inotropic agents for the treatment of severe heart failure.
-
Modern neuroscience advanced our understanding of putative migraine mechanisms, which led to improved therapeutics. Indeed, mechanism-based acute migraine therapy gained steam in the early 1990s after the introduction of the triptans (5-HT1B,D agonists). ⋯ To date, migraine prophylactic drugs are advanced based on expanded indications for already approved pharmaceuticals (e.g., topiramate, valproate, propranolol, and timolol). An improved understanding of the predisposition to an attack, genomic discoveries, valid and reliable biomarkers and surrogates, and predictive preclinical models likely will unravel the neuronal substrates for central hyperexcitability and nociceptive dysmodulation, hopefully leading us to better mechanism-based targets for prevention, and ultimately yielding drugs with optimal therapeutic ratios or indices.
-
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. ⋯ This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.