Toxicologic pathology
-
Toxicologic pathology · Jan 2012
ReviewEcological impacts of the deepwater horizon oil spill: implications for immunotoxicity.
The Deepwater Horizon (DWH) oil spill was the largest environmental disaster and response effort in U. S. history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep-ocean communities and over 1,600 kilometers of shoreline. ⋯ The assessment of injuries, damages, and restoration options for the DWH spill is ongoing. Although petroleum and the polycyclic aromatic hydrocarbon component of oils are known to affect the immune systems of aquatic organisms and wildlife, immunotoxicity is not typically assessed during oil spills and has not been a focus of the DHW assessment. The effects of oil spill contaminants on immune responses are variable and often exposure dependent, but immunotoxic effects seem likely from the DHW spill based on the reported effects of a variety of oils on both aquatic and wildlife species.
-
Session 1 of the 2010 STP/IFSTP Joint Symposium on Toxicologic Neuropathology, titled "Fundamentals of Neurobiology," was organized to provide a foundation for subsequent sessions by presenting essential elements of neuroanatomy and nervous system function. A brief introduction to the session titled "Introduction to Correlative Neurobiology" was provided by Dr. Greg Hall (Eli Lilly and Company, Indianapolis, IN). Correlative neurobiology refers to considerations of the relationships between the highly organized and compartmentalized structure of nervous tissues and the functioning within this system.
-
Toxicologic pathology · Jan 2011
Comparative StudyMorphologic changes associated with intrathecal catheters for direct delivery to the central nervous system in preclinical studies.
A retrospective analysis of microscopic evaluation data from control (device and/or saline-treated) animals in intrathecal studies in monkeys, dogs, sheep, and rats was conducted. The studies were performed by multiple testing facilities. All slide preparation and microscopic evaluation were conducted in the laboratory of the author. ⋯ Although variable between studies (even within species), in general the average severity of these findings was minimal or less in control animals. CT inflammatory mass/pyogranuloma formation, a known complication following the administration of morphine at higher concentrations/doses, was noted in 3 of 25 control dogs and 2 of 77 control monkeys. These data show that inflammatory mass/pyogranuloma formation may occur in control animals, and this occurrence is most common in dogs as compared to monkeys, sheep, and rats.
-
Toxicologic pathology · Oct 2010
International recommendations for training future toxicologic pathologists participating in regulatory-type, nonclinical toxicity studies.
The International Federation of Societies of Toxicologic Pathologists (IFSTP) proposes a common global framework for training future toxicologic pathologists who will support regulatory-type, nonclinical toxicology studies. Optimally, trainees should undertake a scientific curriculum of at least five years at an accredited institution leading to a clinical degree (veterinary medicine or medicine). Trainees should then obtain four or more years of intensive pathology practice during a residency and/or on-the-job "apprenticeship," at least two years of which must be focused on regulatory-type toxicologic pathology topics. ⋯ A nonclinical pathway (e.g., a graduate degree in medical biology or pathology) may be possible if medically trained pathologists are scarce, but this option is not optimal. Regular, lifelong continuing education (peer review of nonclinical studies, professional meetings, reading, short courses) will be necessary to maintain and enhance one's understanding of current toxicologic pathology knowledge, skills, and tools. This framework should provide a rigorous yet flexible way to reliably train future toxicologic pathologists to generate, interpret, integrate, and communicate data in regulatory-type, nonclinical toxicology studies.
-
Toxicologic pathology · Aug 2010
Effects of hepatic drug-metabolizing enzyme induction on clinical pathology parameters in animals and man.
Hepatic drug-metabolizing enzyme (DME) induction is an adaptive response associated with changes in preclinical species; this response can include increases in liver weight, hepatocellular hyperplasia and hypertrophy, and upregulated tissue expression of DMEs. Effects of DME induction on clinical pathology markers of hepatobiliary injury and function in animals as well as humans are not well established. This component of a multipart review of the comparative pathology of xenobiotically mediated induction of hepatic metabolizing enzymes reviews pertinent data from retrospective and prospective preclinical and clinical studies. ⋯ Although correlations between tissue and serum levels of these hepatobiliary markers are limited and inconsistent, increases in serum/plasma activities that are substantial or involve changes in other markers generally reflect hepatobiliary insult rather than DME induction. Extrahepatic effects, including disruption of the hypothalamic-pituitary-thyroid axis, can also occur as a direct outcome of hepatic DME induction in humans and animals. Importantly, hepatic DME induction and associated changes in preclinical species are not necessarily predictive of the occurrence, magnitude, or enzyme induction profile in humans.