Trends in pharmacological sciences
-
Trends Pharmacol. Sci. · Apr 2010
Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain.
Activation of metabotropic glutamate 2 (mGlu2) receptors inhibits pain transmission at the synapses between primary afferent fibers and neurons in the dorsal horn of the spinal cord. In addition, mGlu2 receptors are found in peripheral nociceptors, and in pain-regulatory centers of the brain stem and forebrain. mGlu2 receptor agonists produce analgesia in models of inflammatory and neuropathic pain, but their use is limited by the development of tolerance. A new therapeutic strategy could be based on the transcriptional regulation of mGlu2 receptors via the acetylation-promoted activation of the p65/RelA transcription factor. "Epigenetic" drugs that increase mGlu2 receptor expression, including l-acetylcarnitine and inhibitors of histone deacetylases, have a different analgesic profile with no tolerance to the therapeutic effect after repeated dosing.
-
Trends Pharmacol. Sci. · Nov 2009
ReviewThe "toll" of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia.
Glial activation participates in the mediation of pain including neuropathic pain, due to release of neuroexcitatory, proinflammatory products. Glial activation is now known to occur in response to opioids as well. Opioid-induced glial activation opposes opioid analgesia and enhances opioid tolerance, dependence, reward and respiratory depression. ⋯ This discovery identifies a means for separating the beneficial actions of opioids (opioid receptor mediated) from the unwanted side-effects (TLR4/glial mediated) by pharmacologically targeting TLR4. Such a drug should be a stand-alone therapeutic for treating neuropathic pain as well. Excitingly, with newly-established clinical trials of two glial modulators for treating neuropathic pain and improving the utility of opioids, translation from rats-to-humans now begins with the promise of improved clinical pain control.
-
In recent years, there has been substantial investment in clinical research in the National Health Service (NHS) in England. This contribution reviews these developments, their strong focus on benefit for patients and public health, and the specific programmes to which biomedical and clinical researchers may wish to apply.
-
Trends Pharmacol. Sci. · Aug 2009
GABAergic analgesia: new insights from mutant mice and subtype-selective agonists.
Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the brain where it regulates many physiological functions including sleep, anxiety, reward and memory formation. GABAergic neurons and ionotropic GABA(A) receptors are also found in the spinal cord dorsal horn where they control the propagation of pain signals from the periphery to higher central nervous system areas. ⋯ The identification of GABA(A) receptor subtypes responsible for spinal antihyperalgesic effects has recently opened new avenues for the development of subtype-selective modulators of GABA(A) receptors. First results raise hopes that such compounds will be active against inflammatory and neuropathic pain but devoid of many of the side-effects of the established benzodiazepine-like drugs.
-
Trends Pharmacol. Sci. · Apr 2008
ReviewMechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research.
The use of pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research is a promising approach that provides better understanding of drug efficacy and safety. It is applied to predict efficacy and safety in humans using in vitro bioassay and/or in vivo animal data. Current research in PK-PD modeling focuses on the development of mechanism-based models with improved extrapolation and prediction properties. ⋯ The different terms represent: target-site distribution, target binding and activation and transduction. Ultimately, mechanism-based PK-PD models will also characterize the interaction of the drug effect with disease processes and disease progression. In this review, the principles of mechanism-based PK-PD modeling are described and illustrated by recent applications.