Hypertension
-
Angiotensin II (Ang II) stimulates vascular inflammation, oxidative stress, and formation and rupture of intracranial aneurysms in mice. Because Ang 1-7 acts on Mas receptors and generally counteracts deleterious effects of Ang II, we tested the hypothesis that Ang 1-7 attenuates formation and rupture of intracranial aneurysms. Intracranial aneurysms were induced in wild-type and Mas receptor-deficient mice using a combination of Ang II-induced hypertension and intracranial injection of elastase in the basal cistern. ⋯ In Mas receptor-deficient mice, systolic blood pressure, mortality, and prevalence of subarachnoid hemorrhage were similar (P>0.05) in groups treated with elastase+Ang II or elastase+Ang II+Ang 1-7. The expression of Mas receptor was detected by immunohistochemistry in samples of human intracranial arteries and aneurysms. In conclusion, without attenuating Ang II-induced hypertension, Ang 1-7 decreased mortality and rupture of intracranial aneurysms in mice through a Mas receptor-dependent pathway.
-
Dietary sodium intake is associated with hypertension and cardiovascular risk in the general population. In patients with chronic kidney disease, sodium intake has been associated with progressive renal disease, but not independently of proteinuria. We studied the relationship between urinary sodium (UNa) excretion and UNa to creatinine ratio and mortality or requirement for renal replacement therapy in chronic kidney disease. ⋯ There was no association between low UNa and risk, as observed in some studies. This study demonstrates an association between UNa excretion and mortality in chronic kidney disease, with a cumulative relationship between sodium excretion, albuminuria, and reduced survival. These data support reducing dietary sodium intake in chronic kidney disease, but additional study is required to determine the target sodium intake.
-
Excessive renal efferent sympathetic nerve activity contributes to hypertension in many circumstances. Although both hemodynamic and tubular effects likely participate, most evidence supports a major role for α-adrenergic receptors in mediating the direct epithelial stimulation of sodium retention. Recently, it was reported, however, that norepinephrine activates the thiazide-sensitive NaCl cotransporter (NCC) by stimulating β-adrenergic receptors. ⋯ We confirmed that STE20p-related proline- and alanine-rich kinase is not required for NCC activation, using STK39 knockout mice. Together, the data provide strong support for a signaling system involving β₁-receptors in the distal convoluted tubule that activates NCC, at least in part via oxidative stress-response kinase 1. The results have implications about device- and drug-based treatment of hypertension.
-
Angiotensin II induces cardiovascular injury, in part, by activating inflammatory response; however, the initial factors that trigger the inflammatory cascade remain unclear. Microarray analysis of cardiac tissue exposed to systemic angiotensin II infusion revealed that extracellular heterodimeric proteins S100a8/a9 were highly upregulated. The increase in S100a8/a9 mRNA of CD11b(+)Gr1(+) neutrophils isolated from both the peripheral blood and heart was highest on day 1 of angiotensin II infusion and decreased to baseline at day 7. ⋯ Consequently, recombinant S100a8/a9-treated CFs promoted migration of monocytes and CFs, whereas neutralizing S100a9 antibody blocked S100a9 or receptor for advanced glycation end products-suppressed cellular migration. Finally, administration of a neutralizing S100a9 antibody prevented angiotensin II infusion-induced nuclear factor-κ B activation, inflammatory cell infiltration, cytokine production, subsequent perivascular and interstitial fibrosis, and hypertrophy in heart. Our findings identify neutrophil-produced S100a8/a9 as an initial proinflammatory factor needed to trigger inflammation and cardiac injury during acute hypertension.
-
The activation of angiotensin II type 2 receptor (AT2R) has been considered cardioprotective. However, there are controversial findings regarding the role of overexpressing AT2R in the heart. Using transgenic mice with different levels of AT2R gene overexpression in the heart (1, 4, or 9 copies of the AT2R transgene: Tg1, Tg4, or Tg9), we studied the effect of AT2R overexpression on left ventricular remodeling and dysfunction post-myocardial infarction (MI). ⋯ These pathological responses were diminished in Tg1 and Tg4 mice. Moreover, the protective effects of AT2R were abolished by AT2R antagonist and also absent in Tg9 mice. We thus conclude that whether overexpression of AT2R is beneficial or detrimental to the heart is largely dependent on expression levels and possibly via regulations of Nox2 and transforming growth factor β1 signaling pathways.