Neurosurgical review
-
Neurosurgical review · Apr 2015
da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.
The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. ⋯ The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.
-
Neurosurgical review · Jan 2015
Terson syndrome in subarachnoid hemorrhage, intracerebral hemorrhage, and traumatic brain injury.
This prospective trial was designed to evaluate the incidence of Terson syndrome in patients suffering from subarachnoid hemorrhage, intracerebral hemorrhage, or traumatic brain injury and whether consequences necessarily derive from the intraocular hemorrhage itself. Two ophthalmologic examinations were performed to identify patients with Terson syndrome. Data on initial Glasgow Coma Scale, Hunt and Hess and Fisher grades, aneurysm site and diameter, and volume of hemorrhage in intracerebral hemorrhage patients were correlated to the location and course of Terson syndrome. ⋯ The neurological outcome in subarachnoid hemorrhage patients suffering from Terson syndrome was worse compared with that of subarachnoid hemorrhage patients without Terson syndrome (p = 0.005), and vitrectomy was performed in seven eyes of six patients due to poor visual acuity. Terson syndrome is underestimated in patients with subarachnoid hemorrhage and a rare pathology in intracerebral hemorrhage as well as in traumatic brain injury patients. Spontaneous regression of the intraocular hemorrhage may be seen, but in half of the patients, vitrectomy is necessary to prevent permanent visual deterioration.
-
Neurosurgical review · Jan 2015
Clinical outcome and prognostic factors of patients with angiogram-negative and non-perimesencephalic subarachnoid hemorrhage: benign prognosis like perimesencephalic SAH or same risk as aneurysmal SAH?
Subarachnoid hemorrhage (SAH) is usually caused by a ruptured intracranial aneurysm. However, in some patients, no source of hemorrhage might be detected despite repeated digital subtraction angiography (DSA). Our objective was to analyze factors influencing the clinical outcome in patients suffering from non-aneurysmal and non-perimesencephalic (NPM) SAH. ⋯ Angiogram-negative and NPM-SAH had good prognoses. Patients with non-Fisher-type 3 bleeding had excellent outcomes similar to patients with perimesencephalic SAH, but patients with Fisher-type 3 bleeding were at risk for poor outcome like aneurysmal SAH patients due to cerebral vasospasm and delayed cerebral ischemia. Age and bleeding type were detected as prognostic factors in the multivariate analysis.
-
Neurosurgical review · Jan 2015
Extended endoscopic transsphenoidal approach infrachiasmatic corridor.
An extended endoscopic transsphenoidal approach is required for skull base lesions extending to the suprasellar area. Inferior approach using the infrachiasmatic corridor allows access to the lesions through the tumor growth that is favorable for the extended transsphenoidal approaches. Infrachiasmatic corridor is a safer route for the inferior approaches that is made up by basal arachnoid membrane and Liliequist's membrane with its leaves (diencephalic and mesencephalic leaf). ⋯ Complete tumor resection was performed in 10 of 16 cases and cyst aspiration in 4 cases, and there were remnants in two cases. Postoperative CSF leakage was seen in two patients. Infrachiasmatic corridor provides an easier and safer inferior route for the removal of middle midline skull base lesions in selected cases.
-
Supplemental education is desirable for neurosurgical training, and the use of human cadaver specimen and virtual reality models is routine. An in vivo porcine training model for cranial neurosurgery was introduced in 2005, and our recent experience with this unique model is outlined here. For the first time, porcine anatomy is illustrated with particular respect to neurosurgical procedures. ⋯ After finishing the course, the participants graded that their skills in bone drilling, dissecting the brain and preserving cerebral vessels under microscopic magnification had improved to level A and B. In vivo hands-on courses, fully equipped with microsurgical instruments, offer an outstanding training opportunity in which bleeding management on a pulsating, vital brain represents a unique training approach. Our results have shown that education programmes still lack practical training facilities in which in vivo models may act as a complementary approach in surgical training.