Antimicrobial agents and chemotherapy
-
Antimicrob. Agents Chemother. · Aug 2019
Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa.
Multidrug-resistant (MDR) Gram-negative organisms are a major health concern due to lack of effective therapy. Emergence of resistance to newer agents like ceftazidime-avibactam (CZA) further magnifies the problem. In this context, combination therapy of CZA with other antimicrobials may have potential in treating these pathogens. ⋯ CZA-MEM was effective against P. aeruginosa and CZA-FOS was effective against K. pneumoniae Time-kill analysis also revealed that the synergy of CZA with MEM or AZT may be due to the previously reported restoration of MEM or AZT activity against these organisms. Our findings show that CZA in combination with these antibiotics has potential for therapeutic options in difficult to treat pathogens. Further evaluation of these combinations is warranted.
-
Antimicrob. Agents Chemother. · Jul 2019
Identifying Regimens Containing TBI-166, a New Drug Candidate against Mycobacterium tuberculosis In Vitro and In Vivo.
TBI-166, derived from riminophenazine analogues, is under development in a phase I clinical trial in China. TBI-166 showed more potent anti-tuberculosis (anti-TB) activity than did clofazimine in in vitro and animal experiments. To identify potent regimens containing TBI-166 in TB chemotherapy, TBI-166 was assessed for pharmacological interactions in vitro and in vivo with several anti-TB drugs, including isoniazid (INH), rifampin (RFP), bedaquiline (BDQ), pretomanid (PMD), linezolid (LZD), and pyrazinamide (PZA). ⋯ In C3HeB/FeJNju mice, TBI-166+BDQ+LZD was also the most effective of the TBI-166-containing regimens. In conclusion, five potent chemotherapy regimens that included TBI-166 were identified. The TBI-166+BDQ+LZD regimen is recommended for further testing in a TBI-166 phase IIb clinical trial.
-
Antimicrob. Agents Chemother. · Jun 2019
Pharmacodynamic Attainment of the Synergism of Meropenem and Fosfomycin Combination against Pseudomonas aeruginosa Producing Metallo-β-Lactamase.
Fosfomycin combined with other antimicrobials has shown good efficacy against multidrug-resistant (MDR) bacteria in both in vitro and clinical studies; however, the activity of fosfomycin combined with other antimicrobials against metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa strains has not been tested. The objective of this study was to determine the synergism and optimal intravenous dosing regimens of fosfomycin with meropenem against MDR and MBL-producing P. aeruginosa strains. The MICs of both antimicrobials were determined by the checkerboard method and analyzed by two synergism tests with 19 clones of P. aeruginosa isolates, 10 of which were MBL producers. ⋯ None of the fosfomycin monotherapy regimens reached the PTA of ≥90% (MIC = 16 μg/ml). When combined with meropenem, the fosfomycin regimens reached the PTA of ≥90% in 14 (74%) isolates. The increase in pharmacodynamic activities resulting from the synergistic action of meropenem with fosfomycin demonstrates the potential relevance of this combination to fight infections caused by MDR and MBL-producing P. aeruginosa strains.
-
Antimicrob. Agents Chemother. · May 2019
Incidence of Acute Kidney Injury in Critically Ill Patients Receiving Vancomycin with Concomitant Piperacillin-Tazobactam, Cefepime, or Meropenem.
Critically ill patients are frequently treated with empirical antibiotic therapy, including vancomycin and β-lactams. Recent evidence suggests an increased risk of acute kidney injury (AKI) in patients who received a combination of vancomycin and piperacillin-tazobactam (VPT) compared with patients who received vancomycin alone or vancomycin in combination with cefepime (VC) or meropenem (VM), but most studies were conducted predominately in the non-critically ill population. A retrospective cohort study that included 2,492 patients was conducted in the intensive care units of a large university hospital with the primary outcome being the development of any AKI. ⋯ The rates of stage 2 and stage 3 AKI, respectively, were 15% and 6.6% for VPT patients, 5.8% and 1.8% for VC patients, and 6.6% and 1.3% for VM patients (P < 0.0001 for both comparisons). In multivariate analysis, the use of vancomycin in combination with piperacillin-tazobactam was found to be an independent predictor of AKI (odds ratio [OR], 2.161; 95% confidence interval [CI], 1.620 to 2.883). In conclusion, critically ill patients receiving the combination of VPT had the highest incidence of AKI compared to critically ill patients receiving either VC or VM.
-
Antimicrob. Agents Chemother. · May 2019
Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis.
Novel regimens combining bedaquiline and pretomanid with either linezolid (BPaL regimen) or moxifloxacin and pyrazinamide (BPaMZ regimen) shorten the treatment duration needed to cure tuberculosis (TB) in BALB/c mice compared to that of the first-line regimen and have yielded promising results in initial clinical trials. However, the independent contribution of the investigational new drug pretomanid to the efficacy of BPaMZ has not been examined, and its contribution to BPaL has been examined only over the first 2 months of treatment. In the present study, the addition of pretomanid to BL increased bactericidal activity, prevented emergence of bedaquiline resistance, and shortened the duration needed to prevent relapse with drug-susceptible isolates by at least 2 months in BALB/c mice. ⋯ Treatment of infection with a pyrazinamide-resistant mutant in BALB/c mice with BPaMZ prevented selection of bedaquiline-resistant mutants and reduced the proportion of mice relapsing compared to that for BMZ treatment alone. Among severely ill C3HeB/FeJ mice with caseous pneumonia and cavitation, BPaMZ increased median survival (≥60 versus 21 days) and reduced median lung CFU by 2.4 log10 at 1 month compared to the level for BMZ. In conclusion, in 3 different mouse models, pretomanid contributed significantly to the efficacy of the BPaMZ and BPaL regimens, including restricting the selection of bedaquiline-resistant mutants.