Behavioural brain research
-
The fundamental cognitive-control function of inhibitory control over motor behavior has been extensively investigated using the Stop-signal task. The critical behavioral parameter describing stopping efficacy is the Stop-signal response time (SSRT), and correlations with estimates of this parameter are commonly used to establish that other variables (e.g., other behavioral measures or brain activity measures) are closely related to inhibitory motor control. Recently, however, it has been argued that SSRT estimates can be strongly distorted if participants strategically slow down their responses over the course of the experiment, resulting in the SSRT no longer reliably representing response-inhibition efficacy. ⋯ Concerning brain-behavior correlations, only the left anterior insula was found to be significantly correlated with the SSRT within the set of areas tested here. Interestingly, this brain-behavior correlation differed little for the different SSRT-estimation procedures. In sum, the current results highlight that different SSRT-estimation procedures can strongly influence the distribution of SSRT values across subjects, which in turn can ramify into correlational analyses with other parameters.
-
It is well known that elite athletes have higher performance in perception, planning, and execution in sports activities relative to novices. It remains controversial, however, whether any differences in basic cognitive functions between experts and novices exist. Furthermore, few studies have directly used functional magnetic resonance imaging (fMRI) to investigate neural activation and deactivation differences between experts and novices while performing visuospatial working memory (WM) tasks. ⋯ With regard to brain activation, archery experts displayed higher activation in cortical areas associated with visuospatial attention and working memory, including the middle frontal cortex, supplemental motor area, and dorsolateral prefrontal cortex than that of the novices during the performance of the JLO task. With regard to brain deactivation, archery experts exhibited stronger task-related deactivation in cortical areas, such as the paracentral cortex/precuneus and the anterior and posterior cingulate cortex related to the default network, than that of the novices. These results suggest that the archery experts have a strategy that demands greater use of neural correlates associated with visuospatial working memory and attention in addition to greater use of DMN in visuospatial working memory task not directly tied to their domain of expertise.