Behavioural brain research
-
Comparative Study
Greater neurobehavioral deficits occur in adult mice after repeated, as compared to single, mild traumatic brain injury (mTBI).
Mild traumatic brain injury (mTBI) accounts for the majority of all brain injuries and affected individuals typically experience some extent of cognitive and/or neuropsychiatric deficits. Given that repeated mTBIs often result in worsened prognosis, the cumulative effect of repeated mTBIs is an area of clinical concern and on-going pre-clinical research. Animal models are critical in elucidating the underlying mechanisms of single and repeated mTBI-associated deficits, but the neurobehavioral sequelae produced by these models have not been well characterized. ⋯ We found that the repeated mTBI mice demonstrated deficits in MWM testing and poorer performance on species-typical behaviors. While neither single nor repeated mTBI affected behavior in the EPM or FST, sleep disturbances were observed after both single and repeated mTBI. Here, we conclude that behavioral alterations shown after repeated mTBI resemble several of the deficits or disturbances reported by patients, thus demonstrating the relevance of this murine model to study repeated mTBIs.
-
Trauma induced neuroinflammation plays a key role in the development of postoperative cognitive dysfunction (POCD). The blood-brain barrier (BBB), a highly specialized endothelial layer, is exquisitely sensitive to inflammatory insults, which can result in numerous neurocognitive syndromes. While brain mast cells are the "first responder" in the injury, the functional interactions between mast cells and the BBB remain poorly understood. ⋯ Disodium cromoglycate (cromolyn)--which acts as a mast cell stabilizer--inhibited this effect. Specifically, cromolyn resulted in ameliorated cognitive ability, decrease of inflammatory cytokines and increase of BBB stability. Taken together, these results suggest that activated mast cells contributed to central nervous system inflammation and cognitive dysfunction by promoting BBB disruption, and interactions between mast cells and the BBB could constitute a new and unique therapeutic target for POCD.