Behavioural brain research
-
Hemorrhagic stroke has many symptoms, including central pain, learning and memory impairments, motor deficits, language problems, emotional disturbances, and social maladjustment. Lesions of the ventral basal complex (VBC) of the thalamus elicit thermal and mechanical hyperalgesia, forming an animal model of central post-stroke pain (CPSP). However, no research has yet examined the involvement of learning and memory in CPSP using an animal model. ⋯ However, the lesions did not affect spatial learning (explicit memory) or motor function. The relationship between CPSP and learning and memory is important for patients who suffer from such central pain. The implications of the present study may provide insights into helping reduce CPSP and its associated symptoms.
-
The mechanisms of post-stroke neurogenesis in the subventricular zone (SVZ) are unclear. However, neural stem cell-intrinsic and neurogenic niche mechanisms, as well as neurotransmitters, have been shown to play important roles in SVZ neurogenesis. Recently, a previously unknown population of choline acetyltransferase (ChAT)+ neurons residing in rodent SVZ were identified to have direct control over neural stem cell proliferation by indirectly activating fibroblast growth factor receptor (FGFR). ⋯ These post-stroke neurogenic effects were enhanced by donepezil and partially decreased by atropine. Neither atropine nor donepezil affected peri-infarct microglial activation or serum concentrations of TNF-α, IFN-γ, or TGF-β on day 7 after MCAO. We conclude that ChAT+ neurons in the SVZ may participate in stroke-induced neurogenesis, suggesting a new mechanism for neurogenesis after stroke.
-
The purpose of this study was to explore white matter microstructural alterations in the patients with generalized anxiety disorder (GAD) using diffusion tensor imaging (DTI) technique, and to assess neural associations with the symptom severity. Twenty-eight first-episode, treatment-naive GAD patients without co-morbidities and 28 matched healthy controls underwent DTI acquisition and clinical symptom assessments. ⋯ Reduced FA values in right uncinate fasciculus, left cingulum bundle showed significantly negative correlations with clinical symptom severity for Hamilton anxiety Rating Scale scores. Our findings suggest microstructural abnormalities in uncinate fasciculus and cingulum bundle play key roles in the underlying neural basis of GAD.
-
Major depression is a devastating psychiatric disease worldwide currently. A reduced olfactory sensitivity in MDD patients was well evidenced. We previously interrogated the mechanism of decreasing hippocampus neurogenesis in CUMS rat model of depression. ⋯ Twenty nine differential protein expression was analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway over-representation and Ingenuity pathways analysis (IPA). Seven identified differential proteins were selected for Western blotting validation. This study provides insight that neurogenesis and Energy metabolism disorder is involved in OB dysfunction induced by CUMS.
-
Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. ⋯ After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury.