Behavioural brain research
-
Microvascular disease is defined by microvascular events including arterial wall thickening, microvascular lesions, and microembolic stroke. Characteristics of microvascular disease are observed in the vast majority of patients presenting with late-life depression, and changes in affective behavior may precede microvascular-associated changes in cognitive decline. The current study used a microsphere injection model to test the hypothesis that microembolism infarcts induce depressive-like behaviors in rodents. ⋯ Microembolism infarcts led to an increase in anxiety- and depressive-like behaviors at the LR, but not the SR, time point as evidenced by reduced time in the center of the open field, reduced consumption of a sucrose solution, increased latency to approach a novel female at 14 days and impaired spatial memory at 33 days. A thorough analysis of histological markers and lesion volume revealed that gross histological damage was not predictive of behavioral outcomes, suggesting that alterations in neuronal function may underlie behavioral deficits. Collectively, these data demonstrate that microembolism infarcts are sufficient to induce changes in affective-like behavior and these changes precede alterations in spatial memory.
-
Environmental enrichment (EE) involves enhancing an animal's environment, with the goal of improving animal welfare. Though a well-established discipline, the consequences of EE on behavioural pharmacological tests have not been extensively examined. The purpose of this study was to examine the consequences of EE (or isolation) housing on a range of behavioural pharmacological tests in the rat. ⋯ Dose-response assessments demonstrated that rats housed in EE showed reduced sensitivity to the behavioural effects of DZP and DMI but increased sensitivity to the locomotor-enhancing effects of AMP compared to SC and IC; while IC animals exhibited the clearest dose-response effects to increasing doses of DMI. It may be concluded that environmental manipulation can vary along a continuum and its intensity may be crucial to observable effects. Nonetheless, environmental factors can influence sensitivity to psychotropic drugs and should be considered when implementing EE protocols in such evaluations.
-
Classical behavioral tests in animal models of trigeminal neuropathic pain measure reflexive responses that are not necessarily measures of pain. To overcome the problem, we created a chronic constrictive nerve injury (CCI) rat model of pain by ligation of the infraorbital nerve (ION), and applied the orofacial operant test to assess behavioral responses to mechanical and cold stimulation in these rats. Animals were trained to voluntarily contact their facial region to a mechanical or a cold stimulation module in order to access sweetened milk as a positive reward. ⋯ Our orofacial operant test demonstrates mechanical allodynia, cold allodynia, and hyperalgesia in rats with chronic trigeminal nerve injury. The neuropathic pain in ION-CCI rats was partially alleviated by morphine. Thus, orofacial operant test provides a desirable behavioral assessment method for preclinical studies of chronic trigeminal neuropathic pain.
-
Recently, environmental stimuli on different neurobiological events, via participation of distinct amygdalar (AMY) ORXergic fibers have aroused wide interests in view of their ability to modify neuronal linked stressful and physiological homeostatic conditions. Results of the present study indicate that ORXergic (ORX-A/B) circuits of the facultative hibernating golden hamster (Mesocricetus auratus) central AMY (CeA) and basolateral AMY (BlA) nuclei constitute major sites of feeding behaviors. Indeed, hamsters after treatment of BlA with ORX-A frequently ingested greater quantities of food as compared to controls, while ORX-B in CeA induced a very (p<0.001) great consumption of water. ⋯ When behavioral changes were compared to the expression of the specific ORXergic receptor (ORX-2R), an up-/down-regulating pattern was detected in some limbic areas (AMY, hippocampus and hypothalamus) following treatment with ORX-A or ORX-B plus NMDA. Overall, indications deriving from this study strongly point to hamster BlA-enriched ORX-A fibers in combination with either inhibitory or excitatory signals as main targets of hyperphagic responses while CeA ORX-B activities in presence of these same neuronal signals predominantly induced drinking motivational behaviors. The distinct behavioral activities of these two neuropeptides may have useful clinical bearings toward psychiatric and sleeping disorders such as bulimia and narcolepsy.
-
p21-activated kinases (PAKs) are involved in signal cascades relevant for nociceptive processing and neuropathic pain. Particularly, the recently described group B PAKs 4, 5 and 6 regulate MAP-kinases and the rearrangement of the actin cytoskeleton, both of which have been linked to pain processing. However, a specific role of these PAKs in nociception has not yet been demonstrated. ⋯ However, the nociceptive response in formalin-induced paw inflammation was significantly reduced in knock-out mice associated with inhibition of MAP-kinase activation and a decreased number of formalin-induced c-Fos positive neurons in the spinal cord. Furthermore, in isolated neurons, we found a significantly reduced calcium response after stimulation of TRPA1-channels in PAK 5(-/-)- compared to PAK 5(+/+)-cells. Our results indicate that PAK 5 is involved in formalin-induced inflammatory nociception through regulation of MAPK-induced c-Fos-activation and formalin-specific TRP-channels.