Behavioural brain research
-
The widespread, across-species strategy of stagewise escalation of aggression in agonistic encounters can be understood in terms of resource capture and control with least risk and cost. Human anger likely follows similar principles. As an adaptive phenomenon, escalation may involve particular neural circuitry. ⋯ These frontal areas then impose an inhibitory gating or modulation and focusing of activity initiated by the anterior temporal loci through their projections to GABAergic interneurons in the same cortical/subcortical circuits. Escalation occurs as the inhibition imposed by the frontal areas is progressively lifted. Exploration of the implications, applications and hypotheses flowing from this model will improve our understanding of the biologically important and socially significant phenomena of escalation.
-
Pioglitazone, a peroxisome proliferator activated receptor γ (PPARγ) agonist, is widely used in clinical medicine as a treatment for type 2 diabetes and is recently proved to have beneficial effects on improving cognition in early stages of Alzheimer's disease (AD). Moreover, it has been shown that pioglitazone reduces N-methyl-D-aspartate (NMDA, a glutamate agonist) mediated calcium currents and transients. Since enhanced calcium transients are present in AD models, we tested the hypothesis whether pioglitazone manifests its acquisition memory enhancement role through glutamatergic pathway. ⋯ In conclusion, the present study suggests that glutamatergic pathway is involved in the pioglitazone induced memory performance.
-
Despite being potent anxiolytic agents, benzodiazepines (BDZ) sometimes show reduced therapeutic efficacy in stressed rodents. However, the effectiveness of norepinephrine reuptake inhibitors (NRI) and serotonin-norepinephrine reuptake inhibitors (SNRI) or other anxiolytic interventions, e.g., exercise, remained elusive. Here, we demonstrated that male rats subjected to restraint stress for 4 weeks showed decreases in percent open arm time and open arm entry, as determined by elevated plus-maze test (EPM). ⋯ In ETM, a reduction in avoidance latency was observed only in swimming and venlafaxine-treated groups. However, the combined swimming and pharmacological treatment showed no additive anxiolytic-like effect. It could be concluded that restraint stress induced anxiety-like behaviors, which were not responsive to diazepam or fluoxetine, whereas reboxetine, venlafaxine and swimming showed anxiolytic-like actions in stressed rats.
-
The anatomical connections of septum and hippocampus and the influence of cholinergic and glutamatergic projections in these sites have been reported. In the present study, the effect of pre-training intra-dorsal hippocampal (CA1) and intra-medial septal (MS) administration of scopolamine, a nonselective muscarinic acetylcholine antagonist, and NMDA receptor agents and their interactions, on acquisition of memory have been investigated. ⋯ The cholinergic system between septum and CA1 are modulating memory acquisition processes induced by glutamatergic system in the CA1 or septum and co-activation of these systems in these sites can influence learning and memory.
-
Considerable evidences show that the VTA, as a major source of dopamine neurons projecting to cortical and limbic regions, has a major role in cognitive and motivating aspects of addiction. The current study assessed the ability of the selective D1 receptor antagonist SCH 23390 and D2 receptor antagonist sulpiride administrated into the CA1 region of hippocampus (dorsal hippocampus) to alter the rewarding effects of intra-VTA administration of morphine using the conditioned place preference (CPP). After bilaterally implantation of cannulae into the CA1 and/or VTA in adult male Wistar rats weighing 210-310 g, dose-response effects of different doses of intra-VTA morphine (0.03, 0.1, 0.3, 1 and 3 μg/side) on CPP paradigm were evaluated and animal displacement, conditioning score and locomotor activity were recorded by Ethovision software. ⋯ Intra-CA1 administration of these antagonists alone, in all doses, could not induce CPP. We suggest that D1 and D2 receptors in the CA1 region of hippocampus have a key role in the development of CPP induced by morphine at the level of the VTA. It seems that there is an interaction between dopaminergic and opioidergic systems in these areas in reward circuit.