Behavioural brain research
-
Conditioned reinforcement is hypothesized to be critically involved in drug addiction as a factor contributing to compulsive drug use and relapse. The present study focused on the neurobiology involved in the acquisition and expression of conditioned reinforcing effects of morphine withdrawal employing a conditioned place aversion (CPA) paradigm in acute-dependent rats. Expression of c-Fos in the amygdala (the central nucleus, CeA; the medial nucleus, MeA; the basolateral nucleus, BLA) following naloxone-precipitated withdrawal and the CPA test was examined using a range of naloxone doses (0.02, 0.05, 0.1, 0.2, 0.5 and 1.0 mg/kg). ⋯ In CeA, but not MeA with high-level constitutive neuronal activity, the naloxone-induced modification in c-Fos immunoreactivity following morphine pretreatment exhibited a dose-dependent pattern similar to that seen in the behavioral study. On the other hand, none of the three amygdaloid nuclei examined including CeA, MeA and BLA showed notable sensitivity of c-Fos to the conditioned withdrawal stimulus. These results suggest that CeA may play a role in the negative affective aspect of withdrawal from acute dependence, and in part suggest that the acquisition and expression of CPA may involve different neurobiological mechanisms.
-
Comparative Study
Sleep homeostasis in rats assessed by a long-term intermittent paradoxical sleep deprivation protocol.
Numerous studies have evaluated the sleep homeostasis of rats after short- or long-periods of sleep deprivation, but none has assessed the effects of prolonged sleep restriction on the rat's sleep pattern. The purpose of the present study, therefore, was to evaluate the sleep homeostasis of rats under a protocol of chronic sleep restriction. Male Wistar rats were implanted with electrodes for EEG and EMG recordings. ⋯ High amplitude slow wave sleep was also greatly affected by the protocol. Nonetheless, one day of recovery was sufficient to restore the normal sleep pattern. These findings indicate that this protocol was capable to induce many changes in the rat's sleep patterns, suggesting that during the 6h sleep window there is a sleep adaptive homeostatic process.
-
Comparative Study
Secondary hypoxia exacerbates acute disruptions of energy metabolism in rats resulting from fluid percussion injury.
The purpose of these experiments was to determine whether secondary hypoxia exacerbates the metabolic consequences of fluid percussion injury (FPI). In Experiment I, rats were trained to press a lever for their entire daily ration of food at any time during a 12-h light/dark cycle and run in an activity wheel. After food intake and body weight stabilized, rats were surgically prepared, assigned to one of four groups [FPI+Hypoxia (IH), FPI+Normoxia (IN), Sham Injury+Hypoxia (SH), Sham Injury+Normoxia (SN)] and, after recovery from surgery, anesthetized with halothane delivered by a 21% O2 source. ⋯ Immediately after 30 min of hypoxia or normoxia, rats were confined to metabolism cages that were used to quantify rates of oxygen consumption (VO2), carbon dioxide production (VCO2), and heat production (H). Post-traumatic hypoxia exacerbated the FPI-induced increases in VO2, VCO2, and H. The results of Experiments I and II provide convergent confirmation that secondary hypoxemia exacerbates the FPI-induced hypermetabolic state in rats and therefore might significantly exacerbate the brain injury-induced disruptions of energy metabolism in humans.
-
Comparative Study
Experience-dependent behavioral plasticity is disturbed following traumatic injury to the immature brain.
Traumatic brain injury (TBI) is most prevalent in children and young adults. The long-term effects of pediatric TBI include cognitive and behavioral impairments; however, over time, it is difficult to distinguish individual variability in intellect and behavior from sequelae of early injury. Postnatal day (PND) 19 rats underwent lateral fluid percussion (FP) injury, followed by rearing in either standard (STD) or enriched environment (EE) conditions. ⋯ After the delayed EE, sham EE animals again showed more probe target hits, while FPEE animals did not, demonstrating an enduring memory deficit. These data confirm that early TBI has effects on experience-dependent plasticity resulting in long-term neurobehavioral deficits. In addition, the ability to benefit from environmental stimulation following TBI is dependent upon time after injury.
-
The causes of nigrostriatal neuron degeneration in Parkinson's disease (PD) are not known, but it has been suggested that exogenous or endogenous factors or neurotoxins may play a role. The degree of vulnerability to neurotoxins or other potential mediators of nigral dopamine cell death is thought to be important in understanding Parkinson's disease. In most animal models, the rate of terminal degeneration and corresponding functional impairment is too rapid to investigate effectively either cell vulnerability or the potential benefits of some neuroprotective treatments. ⋯ An immunocytochemical assay for tyrosine hydroxylase, a dopamine cell marker, revealed a partial loss of immunoreactive cells in the substantia nigra. Animals that were co-administered methylphenidate (MPH), a dopamine transport inhibitor, along with the 6-OHDA were spared from the behavioral and neurochemical effects of 6-OHDA, despite receiving more than twice as much neurotoxin as controls. These data suggest that establishing a symptomatic threshold preclinically may help researchers evaluate potential treatments and model individual and group resistance to nigrostriatal insults.