Behavioural brain research
-
Comparative Study
Inhibition of morphine analgesia by LPS: role of opioid and NMDA receptors and spinal glia.
Intraperitoneal (i.p.) injection of toxins, such as the bacterial endotoxin lipopolysaccharide (LPS), is associated with a well-characterized increase in sensitivity to painful stimuli (hyperalgesia) [Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995;63:289-302. [53]] and a longer-lasting reduction in opioid analgesia (anti-analgesia) when pain sensitivity returns to basal levels [Johnston IN, Westbrook RF. ⋯ Specifically, morphine analgesia was restored if LPS was preceded by systemic administration of a non-competitive NMDA receptor antagonist (MK-801), spinal infusion of a glial metabolic inhibitor (fluorocitrate), or intracerebroventricular microinjection of an opioid receptor antagonist (naloxone). Morphine analgesia was also restored if MK-801 was administered after LPS. These results demonstrate that LPS recruits similar, if not the same mechanisms that reduce morphine tolerance following opiate administration: namely, stimulation of opioid and NMDA receptors and recruitment of spinal glia.
-
Clinical Trial Controlled Clinical Trial
Auditory training improves neural timing in the human brainstem.
The auditory brainstem response reflects neural encoding of the acoustic characteristic of a speech syllable with remarkable precision. Some children with learning impairments demonstrate abnormalities in this preconscious measure of neural encoding especially in background noise. This study investigated whether auditory training targeted to remediate perceptually-based learning problems would alter the neural brainstem encoding of the acoustic sound structure of speech in such children. ⋯ However, quiet-to-noise inter-response correlations of the sustained response ( approximately 11-50 ms) increased significantly in the trained children, reflecting improved stimulus encoding precision, whereas control subjects did not exhibit this change. Thus, auditory training can alter the preconscious neural encoding of complex sounds by improving neural synchrony in the auditory brainstem. Additionally, several measures of brainstem response timing were related to changes in cortical physiology, as well as perceptual, academic, and cognitive measures from pre- to post-training.
-
Comparative Study
Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat.
Successful motor skill learning requires repetitive training interrupted by rest periods. In humans, improvement occurs within and between training sessions reflecting fast and slow components of motor learning [Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. ⋯ Learning curves of individual animals were highly variable. These findings confirm in rat that motor skill learning has fast and slow components. No within-session improvement is seen in instrumental learning.
-
Comparative Study
Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration.
The early postnatal brain development, when many potentially sensitive processes occur, has been shown to be vulnerable to different pharmacological and environmental compounds. In the present investigation, four groups of neonatal NMRI male mice were administered the glutamate NMDA receptor antagonist ketamine (50 mg/kg, s.c.), or the GABA(A) receptor agonist diazepam (5 mg/kg, s.c.), or co-administered ketamine (50 mg/kg, s.c.) and diazepam (5 mg/kg, s.c.), or vehicle (0.9% saline, s.c.) on day 10 after birth. On day 11, mice from each treatment group were sacrificed and brains were taken for analysis of neuronal cell degeneration, using Fluoro-Jade staining technique. ⋯ Ketamine and ketamine + diazepam treated mice displayed severe deficits of habituation to the test chamber in the spontaneous motor activity test, marked deficits of acquisition learning and retention memory in the radial arm maze-learning task and less shift learning in the circular swim maze-learning task. This study indicates that the observed functional deficits can be related to cell degeneration induced during a critical stage of neonatal brain development. The potentiated apoptosis induced by ketamine and diazepam may have implications for the selection of drugs used in neonatal paediatric anaesthesia.
-
Comparative Study
Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats.
It is well known that neonatal hypoxic-ischemic brain injury leads to mental retardation and deficits in cognitive abilities such as learning and memory in human beings. The ameliorative effect of erythropoietin (Epo) on experimental hypoxic-ischemic brain injury in neonatal rats has been recently reported. However, the effect of Epo on cognitive abilities in the hypoxic-ischemic brain injury model is unknown. ⋯ Histopathological evaluation demonstrated that Epo also significantly diminished brain injury and spared hippocampal CA1 neurons. In conclusion, Epo administrated as a single dose immediately after neonatal hypoxic-ischemic insult provides benefit over a prolonged period in the still developing rat brain. Since the wide use of Epo in premature newborns, this agent may be potentially beneficial in treating asphyxial brain damage in the perinatal period.