Neurochemistry international
-
Much evidence exists for the involvement of vesicular zinc in neurotransmission and cortical plasticity. Recent studies have reported that mice deficient in zinc transporter-3 protein (ZnT3) and thus, vesicular zinc, have significant behavioural and biochemical deficits. Here, we examined whether phenotypic differences existed in the barrel cortices of ZnT3 KO mice using functional proteomics and quantitative PCR. ⋯ The reduced expression of Nrtkb persisted with whisker plucking. These data demonstrate that fundamental changes in the expression of proteins and genes important in neurotransmission occur in the absence of vesicular zinc. Furthermore, the complement of experience-dependent changes were different between WT and KO mice, indicating that the lack of vesicular zinc affects the process of cortical plasticity.
-
Comparative Study
PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis.
Vascular endothelial growth factor (VEGF), a specific pro-angiogenic peptide, has shown neuroprotective effects in the Parkinson's disease (PD) models, but the underlying mechanisms remain elusive. In this study, the neuroprotective properties of VEGF on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced neurotoxicity in primary cerebellar granule neurons were investigated. Pretreatment of VEGF prevented MPP(+)-induced neuronal apoptosis in a concentration- and time-dependent manner. ⋯ Interestingly, VEGF and PD98059 (an ERK kinase inhibitor) play a synergistic role in protecting neurons from MPP(+)-induced toxicity. Collectively, these findings suggest that the PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP(+)-induced neuronal apoptosis. This finding offers not only a new and clinically significant modality as to how VEGF exerts its neuroprotective effects but also a novel therapeutic strategy for PD by differentially regulating PD-associated signaling pathways.
-
Rapid eye movement (REM) sleep rebound following REM deprivation using the platform-on-water method is characterized by increased time spent in REM sleep and activation of melanin-concentrating hormone (MCH) expressing neurons. Orexinergic neurons discharge reciprocally to MCH-ergic neurons across the sleep-wake cycle. However, the relation between REM architecture and the aforementioned neuropeptides remained unclear. ⋯ A negative reciprocal correlation was also found between the activation of MCH- and orexin-immunoreactive neurons during REM rebound. Furthermore, difference between the activation of CART-immunoreactive (CART-IR) and non-CART-immunoreactive MCH-ergic neuron subpopulations was found only after selective REM deprivation, it was absent in the large platform (stress control) rebound group. These results support the role of CART-IR subpopulation of MCH-ergic neurons and the inverse relationship of MCH and orexin in the regulation of REM sleep after REM sleep deprivation.
-
EGb761 is a well-defined mixture of active compounds extracted from Ginkgo biloba leaves. This extract is used clinically due to its neuroprotective effects, exerted probably via its potent antioxidant or free radical scavenger action. Previous studies suggest that oxidative stress, via free radical production, may play an important role in depression and animal models for depression-like behavior. ⋯ This antidepressant-like effect of EGb761 was associated with a reduction in lipid peroxidation and superoxide radical production (indicated by a downregulation of Mn-superoxide dismutase activity), both of which are indicators of oxidative stress. The protective effect of EGb761 is not related to excitatory or inhibitory effects in locomotor activity, and was also associated with the modulation of serotonergic and dopaminergic neurotransmission. It is suggested that EGb761 produces an antidepressant-like effect, and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.
-
The goal of our work was a throughout characterization of the pharmacology of the TIPP-analog, Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH and see if putative δ-opioid receptor subtypes can be distinguished. Analgesic latencies were assessed in mouse tail-flick assays after intrathecal administration. In vitro receptor autoradiography, binding and ligand-stimulated [(35)S]GTPγS functional assays were performed in the presence of putative δ(1)-(DPDPE: agonist, BNTX: antagonist), δ(2)-(agonist: deltorphin II, Ile(5,6)-deltorphin II, antagonist: naltriben) and μ-(DAMGO: agonist) opioid ligands. ⋯ Deletion of the DOR-1 gene resulted in no residual binding of the radioligand and no significant DPDPE effect on G-protein activation. Tyr-Tic-(2S,3R)-β-MePhe-Phe-OH is a highly potent and δ-opioid specific antagonist both in vivo and in vitro. However, the putative δ(1)- and δ(2)-opioid receptors could not be unequivocally distinguished in vitro.